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Abstract

A queueing system with a single server providing n phases of service
in succession is considered. Every customer receives service in all phases.
When a customer completes his service in the 1** phase he decides either
to proceed to the next phase of service or to join the Kj retrial box (i =
1,2,...,n — 1), from where he repeats the demand for the (i + 1)** phase
of service after a random amount of time and independently to the other
customers in the system. When there are no more customers waiting in
the ordinary queue (first stage), the server departs for a single vacation
of an arbitrarily distributed lenght. The arrival process is assumed to
be Poisson and all service times are arbitrarily distributed. For such a
system, the mean number of customers in the ordinary queue and in each
retrial box separately are obtained, and used to investigate numerically
system performance.

Keywords: Poisson arrivals, n-phase service, retrial queues, general
services, single vacation.

1 Introduction

Queueing systems in which the server provides to each customer a number
of phases of heterogeneous service in succession, can be proved very useful
to model computer networks, production lines and telecommunication systems
where messages are processed in n stages by a single server.

Such kind of systems, with only two phases of service, have firstly discussed
by Krishna and Lee [9] and Doshi [5], while more recently in a series of works
(Madan [13], Choi and Kim [2], Choudhury and Madan [4], Katayama and
Kobayashi [7], Ke [8]), the previous results, are extended to include systems
allowing server vacations, Bernoulli feedback, N-policy, exhaustive or gated bulk
service, startup times etc., but again for models with only two phases of service.
Moreover in all papers mentioned above one can find important applications



to computer communication, production and manufacturing systems, central
processor units and multimedia communications.

Kumar, Vijayakumar and Arivudainambi [11] and Choudhury [3] are the
first who imposed the concept of ”retrial customers ” in the two phase ser-
vice models. Retrial queueing systems are characterized by the fact that an
arriving customer who finds the server unavailable does not wait in a queue but
instead he leaves the system, joining the so called retrial box, from where he
repeats the demand for service later. Practical use of retrial queueing systems
arises in telephone-switching systems and in telecommunication and computer
networks. For complete surveys of past papers on such kind of models see Falin
and Templeton [6] , Kulkarni and Liang [10] and Artalejo [1]. Kumar et.al. [11]
considered a two phase service system where an arriving customer who finds the
server unavailable joins the retrial box from where only the first customer can
retry for service after an arbitrarily distributed time period while in the work
of Choudhury (3] the investigated two phase model includes Bernoulli server
vacations and linear retrial policy. We have to observe here that in both papers
the service procedure contains only two phases of service and also there is not
any ordinary queue and all "waiting ” customers are placed in the retrial box.

In the work here we consider, for first time in the literature, a model with
n phases of service and n — 1 retrial boxes, K1, K, ..., Kn—1 say. All arriving
customers are placed, upon arrival, in an ordinary queue (first stage) to receive
service. When a customer completes his first phase service then, with probability
1 — p1, he proceeds to the second phase while, with probability p;, he leaves
the system and joins the K retrial box. This procedure is repeated in each
stage and so, when a customer completes his i** phase service, then either, with
probability 1 — p;, he proceeds to the (i + 1)** phase, or with probability p; he
joins the K; retrial box. The customers in each retrial box retry, after a random
amount of time and independently to each other, to find the server available and
to proceed to the next phase of their service. Note here that every customer
can join more than one retrial boxes during his service procedure. Moreover,
when there are no more customers for service in the ordinary queue, the server
departs for a single vacation (update devices, maintenance, etc.) of arbitrarily
distributed length. We have to point out here that in our model, and at any
time, an ordinary and n — 1 retrial queues must be taken in to account and so
the way to handle the situation becomes much more complicated.

Our system can be used to model any situation with many stages of service,
where in each stage a control and a separation of the serviced units must be
taken place, and if a unit satisfies some quality standards then it proceeds
immediately to the next phase of service, while, if the quality of the unit is
poor, then it is removed from the system and repeats its attempt to continue
its service procedure later when the server is free from high quality units. As
one understand a such kind of situation arise often in packet transmissions, in
manufacturing systems, in central processors, in multimedia communications
ete..

The article is organized as follows. A full description of the model is given
in section 2. Some, very useful for the analysis results, on the customer total



service cycle and server busy and vacation periods, are given in section 3, while a
system states analysis is performed in section 4. In section 5 the mean number of
customers in the ordinary queue and in each retrial box separately are obtained,
and used to produce, in section 6, numerical results and to compare numerically
system performance under various changes of the parameters.

2 The model

Consider a queueing system consisting of n phases of service and a single server
who follows the customer in service when he passes from one phase to the next.
Customers arrive to the system according to a Poisson distribution parameter
A, and are placed in a single queue (first phase) waiting to be served. When a
customer finishes his service in the ** phase (i = 1,2, ..., n) then either he goes
to the (i+1)* phase with probability 1—p;, or he departs from the system with
probability p; and joins the th retrial box (2 = 1,2,...,n — 1) from where he
retries, independently to the other customers in the box, after an exponential
time parameter y;, to find the server idle and to proceed to the (i + 1)* phase
of service. In case the customer chooses to depart and to join the retrial box,
the server starts immediately to serve in the first phase the next customer in
queue (if any). Every time the server becomes idle (no customers waiting in the
ordinary queue) he departs for a single vacation Up which length is arbitrarily
distributed with distribution function (D.F.) Bq(z), probability density function
(p.d.f) bo(z) and finite mean value by and second moment about zero 1—782). If
the server, upon returning from a vacation, finds customers waiting for service
in the first stage (ordinary queue) he starts serving them immediately, while if
there are no customers waiting, he remains idle awaiting the first arrival, from
outside or from a retrial box, to start the service procedure again.

Let us call P; customers the ordinary customers who are queued up and
wait to be served and P; customers (i = 2,3,...,n) those who joined the K?*;
retrial box. Note here that any customer can join, during his service procedure,
a number of retrial boxes and so a P; customer is called P; customer as far as
he continues his service procedure passing from one phase of service to the next
without joining another retrial box, while if a P; customer joins in the sequel
the K;-’Ll retrial box (j > ) then he becomes a P; customer. The service time of
a P; customer in the jt* phase, B;; say, is assumed to be arbitrarily distributed

with D.F. B;;(z), p.d.f. b;j(z) and finite mean value b;; and second moment

about zero Eg) (Bij(z), bij(2), bij, Zg) do not exist of course for j < 7). Finally

all random variables defined above are assumed to be independent.

3 General Results

If a customer does not join any retrial box during his service procedure (with
n—1

probability Sy = [];-7 (1 — p;)) then his total service cycle will be Ry =



> 5=1 Bij with LST of its p.d.f.
FO(S) = H ,BL-(S),
Jj=1

with 87;(-) the LST of b;;(-). Let us suppose now that an arriving customer joins
r retrial boxes (r = 1,2,...,n — 1) during his service procedure, for example
he joins the retrial boxes K, Km,, .y Km,.. Then it is clear that m; =
1,2,..,n—7, myg =my+1,..,n—7+1, and so on, until m, = m,_;+1,...,n—1.
Moreover the probability of this event is

n—1
Pmima...m,. = PmyPmy+-Pm,. H (1 - pi)1
ity
while the duration of the customer’s total service cycle in this case is (with
mo = 0)

T mi n
Rm1m2---mr e z( z Bmi_1+1j +V) -+ Z Bm,.+1ja

=1 j=m;_1+1 j=ms+1
and the LST of its p.d.f.

r+1 m;

lemg...mr (5) = (-'5* (s)y H H '8;11'—14—1]'(5)’

i=1j=m;_1+1

with m,41 = n. Note here that V is the delay incurrent due to server absence (in
vacations) that precedes the service of every customer emerging from a retrial
box. This absence can be either of a single duration Up, if no customers arrive
from outside during the vacation Up, or of a multiple duration, if at least one
customer arrives during Up, in which case the server has to repeat the vacation
as soon as he finishes the busy period of P; customers and before he becomes
available to the customer emerging from the retrial box. Thus the p.d.f. T(t) of
V satisfies
T(t) = e Mby(t) + (1 — e~ )b (t) * T(2),
with LST
1+ Bo(A+s) — Bo(s)

Thus the LST of the p.d.f. of the customer’s total service cycle R is given
by

n—1 n—r n—r+l n—1

7_'(5) = Z-JU'FO(S) + Z Z Z Z ﬁmlmg...mrfmlmz...mr(s))

r=1mi=1mg=mi+1 Mp=mMpr—_1+1



and if we take derivatives above, at s = 0, we arrive after some algebra at

* d = D -
= —/\ET(S)|3=0 =AE(R) = Z(Pj + Poj)s (1)
Jj=1
where
Poj = ﬂ%;lzg\—)pj—l, .7 — 2, 37 veey Ty ( )
2
P = APi1lbig + Lpj bk [ (L = Pm)l,  5=1,2,.m.

with po = 1, pg; = 0. Thus p* must be considered as the mean number of new
customers arriving during B and so, for an ergodic system, we have to assume
pr<l.

Let now S; be the time interval from the epoch at which a P; customer
starts his service in the j** phase until the epoch he either completes his service
procedure and depart from the system or he joins another retrial box and releases
the server. Let also N;(S;) be the new P; customers during S;. Note here that
during S; we can have only new P;customers (external arrivals) and /or one and
only one new Pji; or Pjyg or ...or P, customer according to the retrial box
that this specific P; customer will join next. Define finally

aO(t, k1, iy, kn)dt = PIN3(S;) = ki i=1,j+1,..,n, t<S; <t+adi,
aj(zl,zj+1,~--,zn) =

1 1 Fy ks ;
koo Zk”l:O...an:O zllzj_’ﬁl...zﬁ" ./;:0 aW (t, k1, iy b )dt.

Then it is easy to understand that, for any j = 1,2, ..., n,

@5(21: 241, 2 2n) = Lo Prtmen [y (1= 2) Il B3 (A = A1), (3)

with p, = 1, 241 = 1. Moreover from relation (2)
d
a':'al(z11 ]-a 17 seely 1)':1=1 =P1:
21

In general and for any z; j = 1,2,..,n, let as denote, for simplicity, by =
the (1 x n — 1) vector = (z3,z3,...,2,) and by Z the (1 x n) vector Z =
(@1,22, ..., T,). To proceed further we need the following Lemma the proof of
which is a simple application of the well known theorem of Takacs [15].

Lemma 1 If (i) |z| < 1 for any specific k = 2, ...,n, and |2,,| < 1 for all other
2<m<nwithm#k,or () |zm| <1,for all2 <m < n andp; > 1, then the
relation

zl_a'l(zl;z2$"'1zn)) (4)

has one and only one zero, z = xz(2) say, inside the region |z1| < 1. Specifically
for z=1, z(1) is the smallest positive real Toot of (4) with z(1) <1 ifp; > 1
and z(1)=1 for p; < 1.



Let now T be the duration of a busy period of P; customers starting with
i P customers and N (T(‘)) be the number of new P; customers (joining the
K" | retrial box) during T*). Define

gQ(t)dt = PIN;(TD) =k; j=2,3,....,n, t<T® < t+di,
Gi(s,2) = Y, 2, 2* i e“Stg(Q(t)dt.
Now it is easy to see (Theorem 1 in Langaris and Katsaros [12]) that
G9(0,2) = (=),
where z(z) the only zero of 21 — a1 (21, 22, ..., 2,) in |21] < 1.

Let now V be the time interval from the epoch the server departs for a single
vacation until the epoch he becomes idle for the first time. Denote also N;(V)
the number of new P; customers during V. If we define

ve(t)dt = P[N;(V) = k; j=2,3,.m, t<V <t+df,
vi(s,2) = Yo 2F [0 e uk(t)dt,

then
’Uk(t)= E_Mbo(t)ts{k=0}
+ o L2y G e o(2) % 6Gh(2) * vi—m(2),
where
5 _ 1 if A holds
) = 0 otherwise,
and so

o Bo(Y)
VO0A) = T = Ao = (@) ®)

Let D® the time interval from the epoch a P; i = 2,3, ...,n retrial customer
finds a position for service until the epoch that the server departs for a vacation,
and denote by N;(D®) the number of the new P; customers during D). Define
finally

dQ(t)dt = PIN;(DD) =k; j=2,3,..,n, t<D® <t+di,
DO (s,2) = Yrey 2° ft:O e‘“d(z (t)dt,

then

QW)=Y o)+ Y xS0 g™ 0, ©

=1 m=1 r=i



where 1; = (0, ...,0,1,0, ...,0) with the 1 in the j** position and
sir(t) = (1= pi)bis(t) * oo % (1 — pr—1)bir—1(£) * prbin(t), 7 =14,i4+1,...,n,

is in fact the total time the P; retrial customer holds the server from the epoch
he finds a position for service until the epoch he joins the K** retrial box and
becomes a P..; customer or departs from the system (case r = n). By taking
LST in (6) above we arrive at

DO (s, 2) = a;(2(2), Zig1s or) 2n),
where the function a;(2(2), Zi+1, ..., #») has been defined in (3).

Define finally C) as the time interval from the epoch at which a P; customer
finds a position for service until the epoch the server becomes for the first time
idle and ready to accept the next customer from outside or from a retrial box.
If N;(C®) is the number of new P; customers during C®) and define

B (t)dt = PIN;(CD) = k; j=2,3,.,n, t<CD <t+di,
CO(s,2) = TuZp 2 [Z e R,
then it is easy to realize that
CD(0, 2) = a;(z(2), Zig1, -, 20)0*(0, 2). (7)

We have to state here the following theorem. The proof is similar to the
proof of Theorem 3.2 in Moutzoukis and Langaris [14] and it is omitted here.

Theorem 2 For any permutation (ig,is,...,in) of the set (2,3,...,n) and for
(a) |%,,] < 1 for any specific m = j+1,..,n, and |z | < 1, for all other
r=j+1,..,nwithr #m, or (b) |z, | <1, forallr =j+1,...,n, and pi;_, > 1,
or (¢) |z | <1, forallr =j +1,...,n, and Pi; > 12 pi,_,, the equation

Zi; — C(ij)(oa Wi;_y (Zi," Zijp1s ey z7-n)) =0, (8)

has, for j = 2,3,...,n, one and only one root, z;, = Ti; (%0000 %)y J F
n, Z, = T;, say, inside the region |z;;| < 1, where the vector wi, (2, ,,
is defined by

z,-j+2, ceny z,-n)

03, (s %ins e Zi,) = (22, 23, ey Zn)s
Wi, (ziaaziu ""zin) = Wy, (171:2 (zia) "'7zin)7zis’ '*-722'1.),

w;, (Z.;k+1,zik+2, ...,zin) = Wy, (.’L‘,;k (zi,c“, ...,zin), z,'k+1,.,., zin), k= 2, ey — 1,

while p; = p, and

_ 0 ;s

pij = Py C(%)(O’ w‘ij_l(z‘ij7zi_7‘+1)"'7z‘in))l"‘.—".

i

Moreover for real z;, =1, r = j+1,...,n, and B s 21 the root z;,(1,...,1)
is the smallest positive real root of (8) with z;;(1,..,1) < 1 4f p;, > 1 and

z,(1,...,1) =1 for Py, < 1.



One can show here that, for any permutatation (ig,i3,...,4,) of the set
(2,3,...,n), the last term p; (> p; _, > ... > B;,) is given by,

= Pin FP0in +8{in <n}Pin-1 Z::in+1(Pk+Puk)
pin = i ) (9)
1_P1—Z:=2 (Pr+pPok) =0 (in<n} (1=Pin—1) Ek.__in_,_l(Pk"l'Po;c)

and so it is clear comparing relations (1), (9) that, for p* <1, p; (and all other
ﬁ,-j) is always less than one.
4 Steady states analysis

Let us assume that a state of statistical equilibrium exists and let N;, i =
1,2, ...,n denote the number of P; customers in the system. Let also

0 if server on vacation,
=< (4,7) 1f server busy on j phase with P; customer,
id if server idle,

and
g(k) = P(¢ =id, Ny =0, Npp = kpp, m =2,3,...,n),
po(k,z)dz =P =0, Npy =k, m=1,2,..,n, =< Uo(t) < z + dzx),
pij(k,z)dz = P(¢ = (4,5), Nm=km, m=1,2,..,n, z < Uy(t) < z +dz),

where, as it is stated before, k = (kz, ..., kn), k = (k1, k2, ..., kn) = (k1, k), and
Ui;(t), Up(t) the elapsed service or vacation time respectively. If finally

Q(z) = Zkzo g(k)z* = ZngO Eknzo q(ke, ...,kn)z§2z§3...z,’§ﬂ,
Po(%,2) = Y gz po(k, 2)2F,
Pij(2,2) = Trsapis(R,2)2F,  i,5=1,2,

then we arrive easily, for z > 0, at

Py(2,z) = Po(Z,0)(1 — Bo(z)) exp[—(A — Az1)z],

Pij(%,2) = P;j(%,0)(1 — Bij(z)) exp[— (X — Az1)a], (10)
and N
Y b5 Q(2) +Q() = Fo((0,2), 0850, )
2 it



with Bg(.) the LST of by(.). For the boundary conditions (z = 0) we obtain in
a similar way

n—1 m
Po((o, Z), 0) = Z PmZm41 ZRm((Ov z)a O)ﬁ:m()‘)

m=1 =1
+ " Pin((0, 2),0)85,(N), (12)
=1
P;;((0,2),0) = p; 2-Q (2), =2 ..,n,
Pi;(%,0) = Pr1(Z,0) [P, (1 — pm) Bim(A = A1), §=2,..m,
— 5 —1 * 1= 2, S (]
Pij(z’ 0) = ,lL,‘-dd?tQ(Z) Hznzz(l - pm)ﬁzm()‘ - )‘31)’ .7 =i+ 1, ey Tl
(13)
while for the Py;(Z,0) we obtain using relations (12) and (13)
Pi(2,0) = {Pu1Q(2)+ Y a;i(21, 241, - 20) Ps5((0, 2),0) (14)

=2

=Po((0,2), 0)[1 + Bp(A) — Bo(A — A=1)]}/[21 — ax(2)]-

Replacing now in the numerator of (14) the zero z(2) of the denominator,
we arrive at

Az(2)Q(2)+ 7, aj(z(2),2541,0,22) Pj; ((0,2),0)
Fo((0,2),0) = TR )P0 ) €20 (15)

and substituting back from (12)-(15) in (10) and (11) and integrating with
respect to = we obtain for j =2,...,n

i-1
e1j(21) P13 (2) = en(z1)Pu(Z) [[ (1 - pm)Bim(d — A21), (16)
m=1
_ d
ejj(#1)Pj;(2) = Hi7—-Q(2), ‘ (17)
]
_ d = . i=2,..,1n
eij(21)Pi;(2) = #id—z,Q(z) H (1= Pm)Bim(A — Az), I (18)
60(21)P0(f) — Az(22,..,20)Q(2)+ E;:z eji(z1)aj(@(22,00120)1%54 1500020 ) Pj5 (Z)

e ROV e o) -
en(21)Puu(z) = {Mar —2(2)]Q(2) + Xi_ses5(21)laj(21, 2541, -+ 20)
—a;(2(2), Zj41, -, 2a)]Pj(Z) + eo(21)[B5(A — Az1)
=Bo(A — Az(2))|Po(2)}/[21 — aa(2)], o



}:%%5 Q(x) +2Q(2) = eol=1) Po(2)B5(), (21)

j=2
where in general P.(Z) = [ P.(Z,z)dz and
A— )\Zl 1
€i5(% €i4 ]. = =.
.7( 1) l_ﬂw()\ )\zl) J( ) sz

We will use in the sequel the expressions above to obtain all generating
functions at the point zZ = 1.

Theorem 3 For p* < 1 the generating functions P;;(.), Py(.), Q(.) at the point
Z =1 are given by

Py(I)=Xb11,  Pj;(1) = Apj—ibjj, =2,.4n

_ = . b= 1wy
Pyi(T) = Api1bi; [2(1 — pm), L o
j=i+1l,.,n (22)
Q(l) 1+)‘b0/Bo(A)’
Po(i) = ﬂ%‘b&“)[zj=2 pj—1+ Q(1)].
Proof: Let us define
N(E) =Q(2)+Py(2) + > > Py(2), (23)
i=1 j=i
then from relations (16), (17) and (18)
ezz(‘-l) i=1,2,...,n
IW)(PMEUM%OMLFHhm
ie.
ManINp>i“”” (24)
7 13 = m j=i+1,...,n

and substituting back in (23), using (19) and observing that /(1) = T we obtain
after manipulations

F=Pu(@)+ 1+ —*(315 Q1)

(1) (25)
+Z j=2 [bn + Zk_J+1 ik Hm——g(l Pm) + ,3*(;)]'—
Using now (19) in (20) and putting Z = I we arrive at
Pu@ _ A Abo \
I - oAl ER®
1
+ZM%ﬁZmHu%HQp@®
j=2 k=j+1 m=j

10



where p; has been defined in Lemma 1, and so from (24)-(26) above we conclude

i-1
Pu(l) =X, Py(Q)=2by; [[(1-pm), 7=23,.,n (27

m=1
Multiplying relation (17) by z;, adding for all j, subtracting from (21) and
using (19) we arrive at

Yi—a €ij(21)Pj;(Z)

SO b5 = AL, (29
with ﬁ*()\)
1@ = Ty = @) (20)
D ) = i G B oo o) (30)

Now it is clear from (5), (7) and (29), (30) that
D,;(Z) = C(l)(oa Z),

and so for p* < 1 Theorem 2 holds for D;(z).

By putting now z; = 1 and, for any permutation (g, %3, ..., i) of (2,3, ...,n),
replacing z;, by the corresponding zero z;, (2., , .., 2i, ) We succeed to eliminate
all except one terms in the left hand part of (28) and arrive at
by

Apj—lbjj (1 + IBS(A))Q(]_), J = 2, 3> veey T2y (31)

1-p*

Pii(I) =

and replacing in (25) we obtain after manipulations

1-p
QM) = —%5—, (32)
1+ 56

which is the third of (22).

From (32) and (31) we obtain the first of (22) and putting back P;;(1) in
(24) and (19) we arrive at the second and forth of (22) respectively and the
theorem has been proved. O

5 Mean number of ordinary and retrial customers

For pp =1 and j =1,...,n, let us define now

n k-1
mi= pia0P + Y B2 [[(1-pm)

k=j+1  m=j

(33)
n—1 r - noo_ k-1
+23 [T @ -pa)birlbsrra+ > b [ @ -pm)l},
r=j m=j k=r+2 m=r+1

then, for the mean length of the ordinary queue,

11



Theorem 4 The mean number of Py customers, in the ordinary queue is given
by,

R S Q@Y (84
5 . vl Ak Pr-1+Q(1)] + Tk

2(1 - pl) ﬂ;()\) k=2 k=1 ’

where Q(1) and 7y, are given by (82), (33) respectively.

E(N:) =

Proof: Differentiating relations (17), (18), (19), with respect to z;, and
setting z; =1, 1 =1,2,...,n, we arrive easily at,

3Py (2) |5—i — A2p;_ 52 ,
821 = =
0P (2) a2p;_y5( I=1 5 _ j-1 d=1_
92y |£=i = 2 H (1 _pm) +A pi—lbij H(l —pm) E,bims (35)
m=i =i ol

1=2,3,.,n, j=i+1,..,n
= 225
B 1= TD?—[Z;c;z Pr-1+ Q(1)].

In a similar way, from (20), (16),

e 35, (B 25(2)
8};,1( et = z{\T—b?ﬁ[ﬁo(,\) > reaPr-1+Q(1)] + ka e
. bl
a};lzl(z).|5=i = 2()‘1 £1) H (1- Pm)[ﬁ:(k) [Zk,__.zpk 1+Q(1) ]—I—Zﬂ'k
k=1
+X° H1(1 — pm)[b1; Elglm + -IQL], i=23,..,n
(36)
Observing now that
ON(Z LS T 8Py (Z
E(N,) = 6z(1 )|2=i = El b2 = G|z + ;( d)pet,
2=13= Z1 Z1

and replacing from (35) and (36) we obtain relation (34) and the theorem has
been proved. O

Before giving the mean queue lengths for the retrial customers we have to
state some preliminary results. Let, for k,j = 2,...,n, m = 1,2,

h(m) dfmgz!|z=1, ﬁf’_;n)= az(a:(:), Fky )|z==1;

“k

12



where z(z) is defined in Lemma 1 (note that ﬁg"}? # ,b}:;), k # 7). Then after
some algebra we obtain,

MY = =S 0 -pa),

BD = X L oA)? :,i:l i

PR = A (b5 + T Bir Ty (1= ) + s 3y [orn [Ty (1 = )],
bﬁ) = Ahsc)(bJJ"_Er_J+1 Bir [Ti (1 — Pm)) + ('\,:(1)1)2 75

+6{k>1}2)‘hk DPk— 1Hm_3(1 pm) E bJ.,-, k,j=2,..n.

r=j

with ] (L =pm)=1for j>i. Moreover define

m=j
— AQ(1L,...,1)hP Mp_y Po(L,...,1) 5 @ o p(N25@)
Y § G YR R e 2pk_1501’[f;=”1(1—pm)['\b°h" + (7))
" A Z p; )+ bo [(1 )h(l) 4 )\Pk—1]
pr—1 | Loy (1—Pm) S 0 1Pj (l—pl)ﬂo(,\) p =
A1) , 2B
+W E POJ(PJk) =+ ﬁ*()\)o) k= 2, ey T
and denote

2

0
Dy =
kl aZkaZ[
Note here that Dy; = Dy, V k,l. Then we state the following theorem.

Q(2)|2=1, kl1=23,..,n

Theorem 5 The quantities Dy, k, | = 2,...,n can be found as the solution of
the system of linear equations,

n—1
(i + ) D = Z 15 Diej (Pr—1 I—[J(l Pm))ds5y + E 25 D150 k> 5}
X (et T (1= pm)) + D1t H (1= pm)[ 3, FEERE5 i + ]
m=j 7=

+Pi-1 n (1- pmnz Lilertrod Dy + 51,
(37)

Proof: Replacing (19) to (20) we arrive at

- Az z €;3(21)a; (21,55 41500:%0) Pj; (Z2)+e11(z1) P11(2)(a1(B)—=
eo(zl)Po(Z) - 1Q(2)+ 7o, eji(%1) 51(4_150:&; ﬁo(,\) )\ﬁ(ﬂ)‘i- 11(21) P11 (2)(a1(2) 1),

13



and replacing to (21) and setting 2; = 1 we obtain
E;‘L:Z HjZ5 %Q(Z) = En—-zl wa’j(l) Zj+1y - ,4n) + 2 (1 z) (al(l z) — 1)
.7.7

(38)
Now adding relation (17) for all j = 2,...,n, putting z; = 1 and subtracting
from (38) we arrive at our basic equation,

zyj 1)—@() Zw[aju,zjﬂ,...,zn)—l]- (39)

J=1 35
Taking ﬁnally derivatives above with respect to zp, z, and using the fact
that from (17) 2252 _; = ,uJD]kaJ, Vk j=23,..n, we arrive after
some algebra at relatlon 37). a
Now we are ready to give the mean number of customers in the retrial boxes.

Lemma 6 The mean number of Py, k = 2,3,...,n customers in K,tc’il retrial
boz is given by

L s )\h(l)b
BNy = 3 SalentoadD+ %2 4 5 oo (0) + o) (40)

+5 (/\)[(l—p )h(l) /\Pk 1]+ Apk 1

Proof: Differentiating (20), (16), with respect to zx, and setting 2z =
1, 1 =1,2,...,n, we obtain after manipulations,

n
7 +
Ton et = buld> bon (B bbon) 1oy, + 54,
I (41)
(2) by [P (1—pr) = .
—?—B?Z: lz=1 = IJHb‘l]l £ a?:( Az=t, §=2,.4n
In a similar way from (17), (18), (19),
T p:Dibii,
ey Wl e i=200m,
oz, 12=1 bi; dzy, I j=i+1,..,n,
8Py (®) | _ __ = EmPom I b 1 & h(l) /\Pk 1 (42)
S |2=1 - K ADme1 mk + 45/35('\ [( —pP ) k ]

+ E pOm(p(l) ﬂ*(,\) )
Observing now that, for any k = 2,3, ...,n,

N (2 2] = B
BNe) = B sy = &)+ 355 O g pome)

=1 j=1

and replacing from (41), (42) to (43) we arrive easily at (40) and the theorem
has been proved. O
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6 Numerical Results

In this section we consider a system of n = 4 phases of service and so three retrial
boxes and use the formulae derived previously to obtain numerical results and
to investigate the way the mean number of customers in the retrial boxes E(N;)
i = 2,3, 4 are affected when we vary the mean vacation time by, the mean service
time of the ordinary customers by7, and the mean retrial interval in the first box
E(retrial K1) = 1/p,, always for increasing values of the mean arrival rate .

To construct the tables we assume that the vacation time Uy and the service
times follow exponential distributions with p.d.f.’s respectively,

1 _aibse 1 _age =Tyl
bg(m) = ae (l/bo) ) b,'](ﬂ',‘) = ?e (1/biJ) ; J — 4
ij g eeey e

Moreover we assume that in all tables below bia = 0.2, big = byy = by
bszg = 033, biz = bag = bzg = by = 0.25,p1 = 0.7, pp = 0.5, p3 =
Finally py = 0.5, pg = 2.

Table 1 shows the way E(N;) ¢ = 2,3,4 changes when we vary the mean
vacation time, for increasing values of the mean arrival rate A. Here one can ob-
serve the crucial role that the vacation plays on the number of retrial customers.
Thus, even for a small value of A\, A = 0.15 for example, E(N>) increases from
0.1488 to 46.026 when we pass from a system without vacation period (by = 0)
to the system with by = 2.7, while the corresponding value for E (N3) increases
from 0.2029 to 64.83. When now the arrival rate A becomes A = 0.42 then even
a small change from by = 0 to by = 0.6 increases dramatically the mean number
of retrial customers to 267.02 in retrial box K7 and to 380.45 in retrial box Ko
respectively. Thus we must be very careful on the vacation period that we must
allow, to avoid overcrowded retrial boxes. The behavior of the third retrial box
K3 (F(Ny)) is smoother, and it shows us a way to reduce this dramatic effect
of the vacation period by allowing faster retrials (E(retrial K3) = 1/ps = 0.5

3 =
0.1.
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here) and /or less preference of the box (ps = 0.1).

A\bo | | o [ o2 | os | 13 | 27
015 E(N;) 0.1488 0.1926 0.3084 0.6816 46.026
E(Ns) 02029 0.2451 0.3602 0.7605  64.83
E(Ns) 0.0112 0.0161 _0.0282  0.0623 __ 3.316
0.27 0.3798  0.5273 1.1548  120.04
0.4958 0.6693 1.3906  170.57
0.0287  0.0435  0.0954  8.599
0.42 1.045 1.8373  267.02
1.3022  2.2013  380.45
0.0768  0.1395  19.077
0.59 41926 2214
5.2556  314.4
0.2956  15.814
0.71 126.8
179.3
9.0327

Table 1: Values of E(N;), i=2,3,4, for p; =1, by; =0.5.

Similar observations can be deduced from Table 2 that contains values of
E(N;) i = 2,3,4 when we vary the mean first stage service by;. One can ob-
serve again the way the mean number of retrial customers in each box increases
when b;; increases. An increase that depends on how fast or slow the mean
retrial E(retrial K;) is and/or on the preference that customers show to the
corresponding box p;.

Ny | | o2 [ o8 [ 13 | 21 | 28 | 55
0.15  E(N,) 0.711 0.2233 0.3014 0.5481 1.0297  18522.3
E(Ns) 0.2257 0271 0.3291 0.4882 0.7737 26410.6
E(Ns) 0.0145 0.0181  0.0226 _ 0.0346 _ 0.0595  1321.15
0.25 0.3646  0.6088 1.1043 4.3585  193.69
0.4783  0.7108 1.1131  3.97  263.19
0.0306  0.047  0.0755 _ 0.25 _ 13.378
0.3 0.5051 0.9877  2.267  64.9
0.662  1.1428  2.354  85.09
0.042  0.0742  0.1496  4.423
0.4 0.9447  3.03¢  112.03
1.2382  3.6085  156.15
0.0765  0.2161 _ 7.9094
0.5 1.8448  108.39
2.4349  152.81
0.1444  7.717
0.71 92.598
131.62
6.632
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Table 2 : Values of E(N;), i =2,3,4, for p; =1, by = 0.2.

Table 3 finally depicts the way the E(N;) ¢ = 2,3,4 are affected when we
vary the mean retrial rate in the first box E(retrial) = 1/u;. One can observe
here not only the increase of E(N3), but mainly the reduction of E(N3) and
E(N4) in the other two boxes when we increase 1/, a reduction which is more
apparent when ) increases.

A\ E(retrial K;) I l 0.02 I 0.2 | 1 | 2 | 10
0.15 E(N,) 0.0452 0.0727 0.1926 0.3397 1.4994
E(N3) 0.2539 0.2515 0.2454 0.2409 0.2329
E(Ng4) 0.0177 0.0171  0.0161  0.0157 0.0151
0.27 0.1423 0.2185 0.5373  0.9183 3.862
0.7229  0.7087 0.6693 0.6443 0.5987
0.0521  0.0488  0.0435 0.413 0.0382
0.42 0.4837  0.761 1.8373 3.045 11.953
2.7032 2.5895 2.2913 2.1153  1.8179
0.1904 0.1699  0.1395  0.1271  0.1093
0.59 8.33 60.25 221.4 371..7 1347.5
464.3 419.03 314.4 265.23 192.75
23.5 21.12 15.814 13.31 9.6763

Table 3 : Values of E(N;), i=2,3,4 for bp =0.2, by; = 0.5.
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Abstract

For R be a separating algebra of subsets of a set X, E a complete
Hausdorff non-Archimedean locally convex space and m : R — E a
bounded finitely additive measure, we study some of the properties of
the integrals with respect to m of scalar valued functions on X. The con-
cepts of convergence in measure, with respect to m, and of m-measurable
functions are introduced and several results concerning these notions are
given.

1 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field,
whose valuation is non-trivial. By a seminorm, on a vector space over K, we
will mean a non-Archimedean seminorm. Similarly, by a locally convex space
we will mean a non-Archimedean locally convex space over K (see [10] or [11]).
For E a locally convex space, we will denote by cs(E) the collection of all
continuous seminorms on E. For X a set, f € KX and A C X, we define

Iflla = sup{|f(2)| : 2 € A} and [ f]| = fllx.

Also for A C X, A¢ will be its complement in X and x4 the K-valued char-
acteristic function of A. The family of all subsets of X will be denoted by
P(X).

Assume next that X is a non-empty set and R a separating algebra of
subsets of X, i.e. R is a family of subsets of X such that

1. XeR,and,if A,BeR ,then AUB, AN B, A€ are also in R.
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2. If z,y are distinct elements of X, then there exists a member of R which
contains z but not y.

Then R is a base for a Hausdorff zero-dimensional topology 7z on X. For F a
locally convex space, we denote by M (R, E) the space of all finitely-additive
measures m : R — E such that m(R) is a bounded subset of E (see [7]). For a
net (V;) of subsets of X, we write V; | 0 if (V;) is decreasing and NV; = 0. An
element m € M(R, E) is said to be o-additive if m(V,,) — 0 for each sequence
(Va) in R which decreases to the empty set. We denote by M,(R,E) the
space of all o-additive members of M(R,E). An m of M(R, E) is said to be
7-additive if m(Vs) — 0 for each net (V) in R with V5 | 0. We will denote by
M- (R, E) the space of all 7-additive members of M (R, E). For m € M (R, E)
and p € cs(E), we define

mp: R =R, my(A) =sup{p(m(V)):V e R,V C A} and |m],=m,(X).
We also define
Nmp: X = R, Npp(z) =inf{m,(V):z € V € R}.

Next we will recall the definition of the integral of an f € KX with respect to
some m € M(R,E). Assume that E is a complete Hausdorff locally convex
space. For A C X, let D4 be the family of all & = {4, As, . . ., Ap; 21, Zo, . .. .
where {4, A;,..., A,} is an R-partition of A and z; € A;,. We make D, into
a directed set by defining a; > o if the partition of A in o is a refine-
ment of the one in ay. For o = {A1, A, ..., Ap; 21,29, ..., 2, }, we define
wa(f,m) = 375 ; f(zx)m(Ax). If the limit limw,(f, m) exists in E, we will
say that f is m-integrable over A and denote this limit by [ 4fdm . For
A = X, we write simply [ fdm. It is easy to see that if f is m-integrable over
X, then it is m-integrable over every A € R and [, fdm = [ xaf dm. If f is

bounded on A, then
p ( / fdm> < [1flla - mp(4).

2 Measurable Sets

Throughout the paper, R will be a separating algebra of subsets of a set X )
E a complete Hausdorff locally convex space and M (R, E) the space of all
bounded E-valued finitely-additive measures on R. We will denote by 7% the
topology on X which has R as a basis. Every member of R is Tr-clopen,
i.e both closed and open. By S(R) we will denote the space of all K-valued
R-simple functions. As in [7], if m € M(R, E), then a subset A of X is said
to be m-measurable if the characteristic function x4 is m-integrable. By [7,
Theorem 4.7], A is measurable iff, for each p € cs(F) and each € > 0, there
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exist V, W in R such that V. C A C W and m,(W \ V) < e.
Let R, be the family of all m-measurable sets. By [7] we have the following

Theorem 2.1 1. Ry, is an algebra of subsets of X.
2. If m:Rp—E, m(A)=[xadm, thenm € M(R,,E).
m s o-additive iff m is o-additive.
m s T-additive iff m is T-additive.
For p € cs(E), we have Npp = Ny, p.
Rm =R
For A € R, we have my(A) = m,(A).

o X ®™ ;A S

For A € R,,, we have
mp(A) = inf{m,(W): W e R,AC W}
9. If f € KX is m-integrable, then f is m-integrable and [ fdm =
[ fam.
10. If f is bounded and m-integrable, then f is m—integrable.

11. An f € KX is m-integrable iff, for each p € cs(F) and each € > 0, there
exists an R-partition {Ay,..., A,} of X such that, for each 1 < k < n,
we have |f(z) — f(y)|- mp(Ar) < € if 2,y € Ay. In this case, if z € Ay,

then
p (/ fdm — Z f(xk)m(Ak)> <e.

12. If m s T-additive, then o subset A of X is measurable iff A is TR, -
clopen.

For m € M(R,E) and p € cs(E), we define
my : P(X) =R, m3(A) =inf{m,(W): AC W € R}.
It is easy to see that

my(A U B) = max{m;(A), m;(B)}.

p

By [7, Theorem 4.10], we have that my(A) = mpy(A) for all A € Ry,.
For p € cs(FE), define

dy: P(X) x P(X) >R, dy(A,B) =mi(AAB),
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where AAB = (A\B) J(B\A). It is easy to see that d, is an ultrapseudometric
on P(X). Let Uy, be the uniformity induced by the family of pseudometrics
dp, p € cs(E).

For A, B in R, we have

p(m(A) —m(B)) < my(AAB) = my(A, B).

Hence m : R — E is Uy-uniformly continuous. Let G,, be the closure of R in

(P(X),Uy). Then m has a unique uniformly continuous extension 7 : G, —
E.

Theorem 2.2 G,, = R,, and m = m.

Proof :  Assume that A € G,, and let p € cs(E) € > 0. There exists V; € R
such that m;(AAV]) < e. Let Wi in R be such that AAV; ¢ W, and my(W1) <
€. Let V=VIiNnWE W =ViUW,. ThenV C AC W. Moreover, W\V = Wy,
and so m,(W \ V) < ¢, which proves that A € R,,,. Conversely, suppose that
A€ Ry and let V, Win R be such that V ¢ A € W and m,(W\V) < e
Since AAV = A\V € W\ V, we have that my(AAV) < mu(W \ V) < ¢,
which proves that A € G,,. Finally, for 4, B in R,,, we have

p(m(A4) —m(B)) = p(m(AAB)) < m,(AAB) = dy(A, B).

Hence m is a Up,-uniformly continuous extension of m and so m = 7. This
completes the proof.

Definition 2.3 If m € M(R,E), then a subset A of X is said to be m-
negligible if m;(A) = 0 for every p € cs(E). A property concerning elements
of X 1s said to be true almost everywhere with respect to m (in short m-a.e)
if the set of all points in X for which it is false is m-negligible.

It is clear that every m-negligible set is measurable.

Theorem 2.4 Let m € M,(R,E) and suppose that R is a o-algebra. Then :

1. A subset B of X is measurable iff, for eachp € cs(E), there are V,W € R
with V.C B CW and my(V) = m,(W) = m;(B), my(W\ V) = 0.
2. Rm s a o-algebra.

3. If E is metrizable, then B is measurable iff there are a V € R and an
m-negligible set A such that B=AUYV.

Proof : 1. Suppose that B s measurable. There are an increasing sequence
(Vz) in R and a decreasing sequence (W,) in R such that V, ¢ B C W,
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and mp,(W, \ Vo) < 1/n. Let V.=UVn, W = (W,. Then V,W € R and
mp,(W\V)=0. Since B=VJ(B\V)C VW \V), we have that

m3(B) = my(B) < max{my(V), my(W \ V)} = my(V) < m2(B)
and so my(B) = m,(V). Analogously we prove that m,(W) = mz(B).
2. Let (Ay) be a sequence in Ry, A =|JA,, p € cs(E) and e > 0. For each
n, there are V,,,W,, € R with V,, C 4, C W,, and my(Wy \ Vo) < €. The sets
V=UVn, W=UW,arein Rand W\V C |J22, W, \ V,, and therefore
mp(W \ V) < sup, m,(W, \ V,) < e. This proves that A € R,,.
3. Suppose that E is metrizable and let (p,) be an increasing sequence of
continuous seminorms on E such that, for each p € cs(E), there exists n with
P < pn. Assume that B is measurable. For each n, there are V,,, W,, € R with
Vo € B C W, and m,,, (Wo \'V,) = 0. Let V = JV,,, W = (\W,. Then
V,W € R. Given p € cs(E), there exists n such that p < p,, and so

mp(WA\V) <my, (W\V) <my, (W, \ V) = 0.

The set A= B\V C W\ V is m-negligible and B = V U A. Hence the result
follows.

Theorem 2.5 Let m € M,R, E), where R is a o-algebra, and let (Ay) be a
sequence of measurable subsets of X which converges to some A in P(X) with
respect to the topology induced by the uniformity U,,. Let

B, =liminf A4,, = U m Ak, By =limsup A4, = ﬂ U Ay.

n k>n n k>n

Then A is measurable and the sets By \ By, AAB; and AAB; are m-negligible.
Moreover A, — B; and A, — B>.

Proof : Since R, is closed in P(X), it follows that A is measurable. Let
p € cs(E) and € > 0. There exists n, such that 7m,(AAA,) < € for all n > n,.
Since

A\By CA\By =[] J A\ 4,

n k>n

we have that

My (A\ By) < my(A\ By) <y, (U (A\Ak)> =

k>n,

up M, (A \ Ax) < e

k>1o
Also

Bl\ACBQ\A:ﬂ<UAk\A) c |\ 4)

n k>n
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and so My (B \ A) < my(Bz \ A) < e. This, being true for each ¢ > 0,
implies that the sets B;AA and By AA are m-negligible. Moreover B;/AB, C
(B1AA) U(B2AA), and so By AB; is m-negligible. Finally,

A,AB; C (A, AA) U (AAB)

and so M, (A AB; < my(AnAA) — 0, which proves that A, — B;. Similarly
An — BQ.

Theorem 2.6 Let m € M,(R, E), where R is a o-algebra, and let f € KX.
Then, f ia m-integrable iff it is M-integrable. Moreover

/fdm:/fdm.

Proof : By Theorem 2.1, if f is m-integrable, then it is also m-integrable
and the two integrals coincide. Conversely, suppose that f is m-integrable
and let p € cs(E) and € > 0. By Theorem 2.1, there exists an R -partition
{A1,..., Az} of X such that, for each k = 1,2,..., we have If(z) — f(y)] -
mp(Ax) < € if 2,y € Ay, In view of Theorem 2.4, there are sets Vi, Wy €
R with Vi C Ay C Wy and my(We \ Vi) = 0, mp(Vi) = my(A;). Let
Vatr = X\ Ug Ve Then Vo € Uiy We \ Vi and so m,(V,yq) = 0.
Now {V1,V%,..., Vat1} is an R-partition of X and, for 0 < k <n+1, we have
|f(z) = f(y)]-mp(Vk) < if z,y € Ay, which proves that f is m-integrable by
Theorem 2.1.

Definition 2.7 Letm € M(R, E) and f € KX. We say that f is m-integrable
over a measurable set A if f- x4 is m-integrable over X. In this case we define

/AfdmszxAdm.

If f is m-integrable, then f is 7m-integrable. Also X4 1s m-integrable and
S0 fxa is m-integrable over X ( by [7, Theorem 4.3), which implies that fxa
1s m-integable. Moreover

/Afdm=/fXAdm:/fXAdm:/Afdm.

Theorem 2.8 Let m € M(R,E) and let f € KX be m-integrable. Then,
gwen € > 0, there ezists 6 > 0 such that p ([, f dm) < € for each A € R,
with my,(A) < 6.

Proof : Since f is m-integrable, there exists W € R such that M\ W) =10
and ||fllw < d < co. Let § = ¢/d and let A € R,, with mp(A) < 6. Then

p</Afdm> :p</Afdm> =p< Aandm) < fllanw - mp(ANW) < e
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Theorem 2.9 Let m € M.(R,E)and let f € KX. Then f is m-integrable iff

1. f is Tr-continuous at every point of the set

G= U {z : Ny p(z) # 0}

p€cs(E)

2. For every p € cs(E), there ezists W € R, with m,(W¢) = 0 and || f||lw <
00.

Proof : The necessity follows from [7, Theorem 4.2].

Conversely, suppose that (1) and (2) hold and let p € cs(E) and € > 0. Let
W € R be such that m,(W¢) = 0 and ||f|lw < d < co. Let ¢; > 0 be such
that e1d < € and €; - [|m|l, < €. The set Y = {z : Ny, () > €} is Tr-compact
(by [7, Theorem 2.6]) and it is contained in W. By (2), f is 7- continuous at
every point of Y. Hence, for each z € Y, there exists V in R contained in W
such that

zeVo C{y:|f(y) - f(2)] < e}

By the compactness of Y, Y is covered by a finite number of the V,, z € Y.
Thus, there are pairwise disjoint members A;, As, ..., A, of R which cover Y
such that Ay C W and each Ay is contained in some V. Let Api = W\U’l1 Ag,
Apyo = We. Then

mp(An+1) = ESEP Nm,p(x) < €
z n+1

( by [7, Corollary 2.3]) and so

|f(z) — fly)|- Myp(Ant1) < dey < €

ifr,y € Appa. If 2,y € Ay, for some k < n, then

|f(z) = f(W)] - mp(Ar) < €1 - my(Ag) < e

Now the result follows by Theorem 2.1.

Theorem 2.10 If f = g m-a.e and g is m-integrable, then f is m-integrable

and
/fdm:/gdm.

Proof :  We will show that f is m-integrable . The set A = {z : f(z) # g(z)}
is m-negligible and hence A € R,. Since g is m-integrable, given ¢ > 0
and p € cs(E), there exists an R-partition {4, 4,, .. ., An} of X such that
lg(z) — g(y)| - mp(Ax) < € if 2,y € Ag. If now {B1,Bs,...,By} is any R,-
partition of X which is a refinement of each of the partitions {A1,As, ... AL}
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and {4, A}, then |f(z) — f(y)|  mp(Bx) < € if z,y € By. Indeed this clearly
holds if B, C A. If By C A, then

|[f(2) = FW)| - mp(Bx) = |g(z) — ()| - mp(B) < e
since each By is contained in some A;. This (in view of Theorem 2.1) implies

that f is mm-integrable and hence m-integrable. By the same Theorem, if
Zx € By, then

p (/fdm - Zf(fck)m(Bk)> <e and p </gdm = Zg(xk)m(Bk)> < e
k=1 k=1

Since, for By C A, we have that m(B, = 0 and f(zx) = g(zx) when By C A°,

it follows that
p</fdm—/gdm> <e.

This, being true for all € > 0 and all p € cs(E), implies that

/fdm:/fdm:/gdm:/gdm,

which completes the proof.

Theorem 2.11 Letm € M, (R, E) and suppose that R is a o-algebra. If (A,)
is a sequence in R, then for each p € cs(E) we have

my(liminf 4,) < liminfm,(A,) < limsup m,(A4,) < m,(limsup 4,,).
Proof : Let By, = iz, Ak, Gn =i, Ak Then
liminf A4,, = U B, and limsupA, = m Gn.
Since m is o-additive, we have m, (liminf A,) = sup,, m,(B,). But

My Br) < gf myp(Ax) < liminf my,(A,).

Thus
myp(liminf A,) < liminfm,(A4,).

Analogously we prove that
lim sup m,(A4,) < m,(limsup A,)

and hence‘the result follows.
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Corollary 2.12 Let m € M,(R, E), where R is a o-algebra, and let (A,) be
a sequence 1 R such that

liminf A,, = limsup A, = A.
Then, for each p € cs(E), we have that m,(A,) — m,(A).

Theorem 2.13 Let m € M(R,E) and let f € KX be m-integrable. Ifp €
cs(E) a> 0 ad € > 0, then there exists g € S(R) such that

my({z: |f(z) — g(z)| 2 o}) < e

Proof - Since f is m-integrable, there exists an R-partition {4, Ay, ..., A,}
of X such that |f(z) — f(y)| - mp(Ar) < ea if z,y € A;. Let z, € Ay,
9= 1 f(@e)xa, and G={z: |f(z) — g(z) > a}. If z € G N A, then

ea > |f(z) = f(ze)] - mp(Ak) 2 a - my(Ar)

and thus m,(A) < e. The set
W= J{4r: AnG #0}
contains G and so ms(G) < my(W) < e.

Theorem 2.14 Let m € M(R, E) and let f € KX be m-integrable. Then, for
each o > 0, the sets

Ai={z:|f(@)2a}, Ar={z:|f(z)|>a}, As={z:|f(z)| <o}
As={z:|f(2)| <o} and As={z:|f(z)| =0}

are m-measurable.

Proof :  Let p € cs(E) and € > 0. By the preceding Theorem, there exists
W e R and g € S(R) such that m,(W) < e and {z : |f(z) — g(z)| > o} C W.
Let g = ) p_1 AXB,, where By, ..., B, are disjoint members of R. Let B =
{Bk . I>‘k| > O{}. Then

Bnwec{z:|f(z)|>a} Cc WUB.

Indeed, let z € BN W* and assume that |f(z)| < o Since z € B, we
have |g(z)| > a and so |g(z) — f(z)| = |g(x)] > a, a contradiction. Hence
BNW® C A;. Also, ify ¢ WUB, then |f(y) — g(y)| < @ and |g(y)| < e, which
implies that |f(y)| < o. Thus 4; C BUW. Moreover (WUB)\(BNW*®) = W
and m,(W) < e. This proves that A; is m-measurable. In an analogous way
we prove that A, is measurable. Finally the sets A3 = A5, Ay = A, and
As = A; \ Ay are measurable.
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3 Measurable Functions

Definition 3.1 If m € M(R, E), then a function f € K* is said to be m-
measurable, or just measurable if no confusion is possible to arise, if f~1(A) €
R for each clopen subset A of K.

We have the following two easily verified Lemmas.
Lemma 3.2 A subset A of X is measurable iff x4 is measurable.
Lemma 3.3 Let A be a closed subset of K and let

wa:K—=R, wy(z)=inf|z—y|
yeA

Then :
1. For z,y € K, we have wa(z) < max{|z — y|,wa(y)}.
2. For each o > 0, the sets
{z:walz) <o}, {z:walz) <a} {z:wale) >0}, {z:walz)>a}
are clopen.

Theorem 3.4 Let m € M(R, E), where R is a o-algebra, and let f € KX,
The following are equivalent : -

1. For each Borel subset B of K, the set f~'(B) is measurable.
2. f7Y(A) is measurable for each closed subset A of K.

8. f7'(A) is measurable for each open subset A of K.

4. f is measurable.

Proof : It is clear that (2) is equivalent to (3) and that (1) = (2) = (4). Also,
(3) = (1) since the family of all subsets A of K for which 7Y A) e Ry is a
o-algebra because R,, is a o-algebra. Finally, (4) implies (2). Indeed assume
that f is measurable and let A be a closed subset of K. Let w4 be as in the
preceding Lemma. Since A is closed, we have that A = {s € K : wy(s) = 0}.
Let Ap = {s : wa(s) < 1/n}. Each A, is clopen and thus B, = f~1(4,) is
measurable. Since f~!(A) = ) B,, the result clearly follows.

Theorem 3.5 Let m € M(R, E) and let f € KX be m-measurable. Then :
1. If ¢ : K — K is continuous, then the function ¢ o f is measurable.

2. For each g € S(Ry,), the functions hy = gf and hy = g+ f are measur-
able.
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Proof : 1). It follows from the fact that ¢~*(A) is clopen in K for each clopen
A.

2). There exists an R,,-partition {A;,..., A,} of X, and \; in K such that
9= > % 1 MXdp, A =0, A # 0 for k < n ( we may have A, = ). Now, for
A clopen subset of K, we have

By (4] = O RTH(A) N Ay.

If K < n, then
A A) N A= A [F10514)] .

Also
hi'(A) N A, € {A,, 0}.

Hence each hi'(A4) N A is measurable and so h7'(A) is measurable, which
proves that hA; is measurable. To prove that h, is measurable, it suffices to
show that, for G € R, and A € K, the function h = f 4+ Axs is measurable.
For such an h and A clopen subset of K, we have

A = [Gnf =+ 4] [eenf14)],
and the result follows.
Theorem 3.6 Let m € M,.(R,E). Then :
1. An f € K* is measurable iff it is T, -continuous.
2. If f,g are measurable, then f + g and fg are measurable.
Proof : 1). It follows from the fact that, when m is 7-additive, a subset of X
is in R, iff it is 7%, -clopen.

2). It is a consequence of (1) since the sum and the product of two continuous
functions are continuous.

Theorem 3.7 Let m € M(R,E) and let f,g € KX with f = g m-a.e. If g is
measurable, then f also is measurable.

Proof : The set G = {z : f(z) # g(z)} is negligible and hence measurable.
For A a clopen subset of K, we have

A =[@ncUlr@ne] = [ n6J '@ ne.

Since f~'(A) NG is negligible and hence measurable, the result follows.

29
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Theorem 3.8 Letm € M (R, E), where R is a o-algebra. If f, g are measur-
able functions and A € K, then the sets

Gi={z:[f(@)] > 9@}, G2={z:|f(z)| > |g(z)]},
Gs={z:|f(@)|=lg(=)[}, Ga={z:f(z) =2}
are measurable.

Proof : For each rational number r, the set
Fr={z: 1f@) > 1} Yz 2 lo@)] <}
is measurable. Since R is a o-algebra, R, is also a o-algebra and thus the set
Gi= U{FT :r >0, r rational}

is measurable. Analogously the set B = {z : |g(z)| > |f(z)|} is measurable
and so G = B° is measurable. Also G3 = G, \ G, is measurable. Finally the
function A = f — X is measurable, by Theorem 3.5, and so the set

Gyg = ﬂ{a: :h(z)| < 1/n}

is measurable.

Theorem 3.9 Let m € M(R,E) and let f € KX be measurable. Then f is
TR, -CONtINUOUS at every point of the set

Z= |J {z: Npp(z)#0}.

pEcs(E)

Proof : Let Npp(z) =d > 0andlete > 0. Theset G = {z: |f(y)—f(z)| < €}
1s measurable. Hence, there are VW € R such that V ¢ G c W and
my(W \ V) < d. Since z € W and Npp(z) > my(W \ V), it follows that
z € V C G, which proves that f is continuous at z.

Corollary 3.10 Let m € M,(R,E) and let f € KX be measurable. If there
ezxists an integrable function g such that |f| < |g|, then f is integrable.

Proof : Given p € cs(E), there exists W € R such that ||g|lw < oo and
my(W€) = 0. By the preceding Theorem and the Theorem 2.9, f is -
integrable and so f is m-integrable.

Theorem 3.11 Let m € M(R, E), where R is a o-algebra, and let (f,) be a
sequence of measurable functions which converges to some f m-almost every-
where. Then f is measurable.
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Proof :  Let A be a clopen subset of K and let B, = f;*(A). The set
B = liminf B, is in R,, since R, since is a o-algebra. Let Z = {z : f(z) =
lim f,(z)}. Then Z¢is m-negligible and hence measurable. Moreover, f~1(A)N
Z = BN Z. Indeed, let z € f~1(A) N Z. Since lim f,(z) = f(z) € A, there
exists a k such that

z € ()5 Brn C B. Conversely, if z € BN Z, then there exists a k such
that £ € (,>5 Bn, and so fn(z) € A for all'n > k. Since A is closed and
fn(z) = f(z), it follows that f(z) € Aandso z € f~'(4)NZ. Now BN Z is
measurable and

) =BnzIl i nz.

As f71(A) N Z¢ is negligible, it is measurable and so f~(A) is measurable.
Hence the result follows.

Theorem 3.12 (Egoroff’s Theorem) Let m € M, (R, E), where R is a o-
algebra, and let (fn) be a sequence of measurable functions which converges
m-a.e to some f. Then for each € > 0 and each p € cs(E), there exists A € R,
with my(A°) < €, such that f, — f uniformly on A.

Proof :  Let G be an m-negligible set such that f,(z) — f(z) for all z € G¢
and let p € cs(E) and € > 0. By the preceding Theorem, f is measurable.
Claim. For each § > 0, there exist B € R, with m,(B°) < ¢, and an integer
N such that |fn(z) — f(z)] <6 for all z € B and all n > N. In fact, let

An={z € X : |fa(z) - f(2)| 2 6}(|G° and Dy = | 4n.

n>N

Since m is T-additive, each f, — f is measurable (by Theorem 3.4) and so A,
is measurable, which implies that Dy is measurable since R is a o-algebra.
Moreover Dy | 0 since fn(z) — f(z) for all z € G°. As 1 is o-additive, there
exists an N such that m,(Dy UG) = m,(Dy) < e. There are V,W € R such
that V. C Dy UG C W and m,(W \ V) < e. Now

my(W) = max{m,(V), m,(W \ V)} < max{m,(Dy UG), e} = .

Taking B = W, we see that if z € B, then z ¢ Dy UG and so z ¢ A, for
each n > N, ie |fo(x) — f(z)| < 6. Thus the claim follows.

By our claim, there are n; < ny < ..., and sets B, € R, with myp(Br) < € and
|fn — f(z)| < 1/k for all z ¢ By and all n > ny. For A = U By, we have that
my(A) = sup, my(Bg) < e. Moreover, f, — f uniformly on A®. In fact, given
0 >0, choose k > 1/4. If z € A° C Bg, we have |f,(z) — f(z)] < 1/k < 6 for
all n > ny. This completes the proof.

Theorem 3.13 Let m € M(R, E), where E 1s metrizable, and let (f,) be a
sequence in KX and f € KX. If, for each p € cs(E) and each € > 0, there

exists an A in R, with my(A) < €, such that (f,) converges uniformly to f on
Al then fn(z) = f(z) m-a.e

31



32 Katsaras

Proof :  Let (pn,) be an increasing sequence of continuous seminorms on E
such that, for each p € cs(E), there exists an n with p < p,,. For each k, there
exists Ay € R, with myp, (4;) < 1/k, such that f, — f uniformly on A¢. Let
A = (A and let p € cs(E). Choose k such that p < p;. Then, for each
n > k, we have :

m,(A) < my(An) <myp,(A4,) <1/n—0,

and hence A is negligible. Moreover, f,(z) — f(z) for all z € A°.

4 Convergence in Measure
Let m € M(R, E).

Definition 4.1 A net (gs) in K* converges in measure, with respect to m, to
some f € KX if, for each p € cs(E) and each a > 0, we have

limm, ({z : |gs() — f(z)] 2 a}) = 0.

Theorem 4.2 Let m € M, (R, E), where R is a o-algebra, and let (f,) be
a sequence in KX which converges in measure to both fandg. Then f =g
m-a.e.

Proof : For each positive integer k, let
Ank = {2 : [falz) = f(@)| 2 1/k}, Bux = {z: |g(z) — fu(z)| > 1/K},

Ge=A{z:|f(z) — g(z)| > 1/k}.
Then Gy C Anx |J Bni and so

m,(Gi) < max{m;(Ank), My (Bnk)},

for all n. It follows that m;}(Gy) = 0 for all p € cs(E), and so Gy, is negligible.
Since m is o-additive and R a o-algebra, it follows that the set

G={z: f(x) #9(=)} = JC:
1s negligible, and thus f = g m-a.e
Theorem 4.3 Let m € M(R,E) and f € KX. Then, f is m-integrable iff
1. There erists a net (gs) in S(R) which converges in measure to F

2. For each p € cs(E) there exists a W € R, with m,(W¢) = 0, such that
f s bounded on W.
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Proof :  Assume that f is integrable. Then (2) holds by Theorem 2.1. To
prove (1), we consider the set A = {(n,p) : n € N,p € cs(F)}. We make A
into a directed set by defining (n1,p1 > (ng, p2) iff ny > ny and p; > ps.

Claim: For each ¢ = (n,p), there exist hs € S(R) and G5 € R such that
mp(Gs) <1/n and As={z:|hs(z) — f(z)| > 1/n} C Gs.

Moreover, we can choose hs so that hs(X) C f(X).

Indeed, there exists an R-partition {Bi,..., By} of X such that , for each
1 <k <N, we have |f(z) — f(y)| - mp(Bx) < 1/n? if 2,y € By. Choose
Zx € By and set g5 = chv:l f(zk)xs,- Let

As={z: |hs(z) = f(z)| 2 1/n} and Gs=|J{Bx:ByNA; # 0}.
If z € By N Ags, then
1/n? > |f(z) — f(zx)] - mp(B) > 1/n - my(By),

and so my(Bx) < 1/n. It follows that m,(Gs) < 1/n and clearly A5 C Gs.
This proves the claim. Now hs — f in measure. In fact, let p, € cs(E), a > 0
and € > 0. Choose n, > 1/a,1/e. For § = (n,p) > 6, = (n,,p,), let

Zs ={z : |gs(z) — f(z)] > a}.

Then Zs C As C G5 and so m;(Z5) < my(Gs) < 1/n < e. This proves that
hs — f in measure.

Conversely, suppose that (1) and (2) hold and let p € cs(E) and € > 0. By
(2), there exists W € R, with m,(W¢) = 0, such that ||f||w < d < co. Let
(95) be a net in S(R) which converges in measure to f. Choose o > 0 such
that o - my(X) < e. There exists a d, such that mZ(Zs,) < e/d, where

Zs, = {2 : 195,(z) — f(z)| 2 a}.

There exist an R-partition {W1,..., Wy} of X and ); € K such that g5, =
SN Xixw,. Thereisa V € R containing Zs, such that m,(V) < e/d. Let
{V1,...,V,} be any R-partition of X, which is a refinement of each of the
partitions {W1,..., Wy}, {W,W¢}, and {V,V°}. Let 1 <i<nand z,y € V..
We will prove that

|f(z) = f)] - mp(Vi) < e
This is clearly true if V; C W¢. So, assume that V; C W. If V; C V, then
|f(z) = f(y)] - mp(Vi) < d-mp(V) <e.
Finally, if V; C V¢, then (since g5, (x) = gs, (y) as z,y are in some W;) we have
£ (z) = f(W)| < max{|f(z) - g5, ()|, lgs,(¥) — fFW)|} < @
and so
|F(2) = FW)- mp(Vi) < - myp(X) <e.
Now the result follows from Theorem 2.1.
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Theorem 4.4 Let m € M(R,E) and let (g5)sen be a net in KX which con-
verges in measure to some f. If E is metrizable, then there exist §; < 65 < ...
such that the sequence (gs,) converges in measure to f.

Proof : Let (pn) be an increasing sequence of continuous seminorms on E
such that, for each p € cs(E), there exists an n with p < p,. There is an
increasing sequence (d,,) in A such that

m,, ({2 :1gs(z) — f(2)| > 1/n}) < 1/n

for all § > 6,,. Let h, = gs,. Then h, — f in measure. Indeed, let p € cs(E),
a >0 and € > 0. Choose n, > 1/a,1/e with p,, > p. Then, for n > n,, we
have

Mp({z 2 [hn(2) — f(2)] 2 o}) < my({z : |ha(z) = f(2)| > 1/n})
<my ({z:|ha(z) — f(z)| > 1/n}) < 1/n<e

Thus h, — f in measure and the result follows.

Corollary 4.5 If f € KX is m-integrable and E metrizable, then there exists

a sequence (g,) in S(R) which converges in measure to f. Moreover, we can
choose (gn) so that g,(X) C f(X) for all n.

Theorem 4.6 Let m € M,(R, E), where E is metrizable, and consider on X
the topology Tr. Let (f,) be a sequence in KX which converges in measure to
some f. Then, there ezist a subsequence (fn,) and an F, set F such that F is
a support set for m and f,, — f pointwise on F. If R is a o-algebra, then we
may choose F' to be in R.

Proof : Let (p,) be an increasing sequence of continuous seminorms on E such
that, for each p € cs(E), there exists an n with p < p,. Choose inductively
n1 < ng < ... such that

My ({2 2 | fn(z) = f(2)] 2 1/k}) < 1/k

for all n > ny. Let

Ar ={z : |falz) — f(2)| = 1/k}
and let Vi € R, containing Ay, such that m,, (Vi) < 1/k. Set

A= UV F=x\4
N=1k>N
Then F'is an F, set and F € R if R is a o-algebra. If V € R is contained in
A, then py(m(V)) = 0 for all k. Indeed, for all N, we have V C Ussx Vi- So,
if N > k, then -

My, (V) < sup My, (Vi) < sup myp, (Vi) < 1/N
i>N i>N
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and so my, (V) = 0. This proves that F' is a support set for m. Finally, let
z € F' and let N, be such that z ¢ {J;5 5 Vi. For k > N,, we have z ¢ V; and
S0 | fn, (z) — f(z)] < 1/k — 0. This clearly completes the proof.

Theorem 4.7 Let m € M,(R, E), where E is metrizable and R a o-algebra.
If f is m-integrable, then f is m-measurable.

Proof : By Corollary 4.5, there exists a sequence (g,) in S(R) which converges
in measure to f. In view of the preceding Theorem, there exist a subsequence
(gn,) and a set F' € R such that F is a support set for m and On, = f
pointwise on F'. Since each g,, is measurable, it follows that f is measurable
by Theorem 3.11.

Theorem 4.8 Let m € M,(R, E), where E is metrizable and R a o-algebra.
If a sequence (fn) of measurable functions converges in measure to some f,
then f is measurable.

Proof : By Theorem 4.6 there exist a se subsequence ( fn,) and a set F € R
such that F' is a support set for m and f,, — f pointwise on F. Now the
result follows from Theorem 3.11.

Theorem 4.9 Let m € M;(R,E), p € cs(E) and € > 0. Then :

1. If f € K* is measurable, then there ezists a d > 0 such that
my({z : |f(z)] > d}) <e.

2. If (gn) is a sequence of measurable functions which COMUVETges in Mmeasure
to some g, then there ezists o > 0 such that m}({z : |g(z)| > a}) < e.

Proof : 1). Let V, ={z : |f(z)| > n}. Then V,, € R,, and V, | 0. Since m is
o-additive, there exists an n such that m:(V},) < e.

2). Let Ay = {2 : |gn(z) —g(z)| > 1}. There exists an n such that my(An) < €.
By (1), there exists a > 1 sauch that, if B = {z : |g,(z)| > o}, then my(B) <
e If A={z:|g(z)| > a}, then A C BU A, and so

my,(A) < max{m;(B),m;(A4n)} < e.

Theorem 4.10 Let m € M, (R, E) and let (f,) and (gn) be two sequences of
measurable functions which converge in measure to f, g, respectively. Then
fan+ 90— f+ g and frg, — fg in measure.

Proof : It is easy to see that (f, + g,) converges in measure to f+g To
prove that the sequence (f,gn) converges in measure to fg, we first prove that
frng — fg in measure. Indeed, let p € cs(E), @ > 0 and € > 0. By the
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preceding Theorem, there exists a d > 0 such that, if A = {z : |g(z)| > d},
then m;(A4) < e. Let

An =1z : |fn(2)9(2)(=f(2)9(z)| = o}, Bn={z:|fulz) - f(2)| > o/d}.

Then A, C B, U A. There exists an n, such that ms(Bp) < € for n > n,.
Thus, for n > n,, we have

my(An) < max{m;(Bn), m;(A)} <e,

which proves our claim.
Next we show that f? — f? (and analogously g> — ¢%) in measure. Indeed let
hn = fn — f. Then h, — 0 in measure. Since, for o > 0, we have

{z: [ha(@)] > a} = {2 : |hn(2)] = &M?},

it follows that h2 — 0 in measure. Now f2 — f2 = A2 + 2(f,f — f%) = O in
measure and so f2 — f? in measure.
Next we observe that

(ot 9n)(f+9) = fof + guf + fag + gng = f2+2fg+ ¢°

in measure. If ¢, = (fn+9gn) — (f +9), then ¢, — 0 in measure and so ¢ — 0
in measure. Now

(fnt90) = (f+ 92 =2 +2[(fat9)(f+9) — (F+9))] = 0

in measure. Finally,

(f+9)° = =g = fg

N

fngn = % [(fn i gn)z - fv% - 9721} —

in measure. Hence the result follows.

Theorem 4.11 Letm € M,(R, E), where E is metrizable and R a o-algebra.
Let f,g € K* be such that f is m-integrable and g9 m-measurable. Then f+ g
and gf are m-measurable.

Proof : By Corollary 4.5, there exists a sequence (hn) of R-simple functions
which converges in measure to f. In view of the preceding Theorem, the se-
quence (h,g) converges in measure to fg. Each hng is measurable by Theorem
3.5. Hence fg is measurable by Theorem 4.8. The same Theorem implies
that f + g is measurable since h, + g — f + g in measure and each h,, + g is
measurable by Theorem 3.5.

Theorem 4.12 Let m € M,(R,E) and let (fs)sen be a net in KX which
converges in measure to some f. Then, there exists a support set F' for m and
a subnet of (fs) which converges to f pointwise on F.
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Proof : Let 2 = {(6,p,k) : 6 € A,p € ¢s(E),k € N} and make = into a
directed set by defining (8, p, k) > (01,p1,k1) if 6 > 61, p > p; and k& > k.
Let £ = (8, p, k). There exists §; = (£) > § such that

my({z : |fa(z) — f(2)| =2 1/k}) < 1/k.

In this way we get a subnet (fy(e))eez of (f5). Let
Ge={z: |fype(2) — f(z)| > 1/k}

and choose W¢ € R containing G¢ and such that m,(W;) < 1/k. Let

A=UwWe, F=Xx\4

EEEE>E

Then : 1. fye)(z) = f(z) for all z € F. In fact, let z € F. There exists a
&1 = (01, p1, k1) such that Now, for £ = (6, p, k) > &, we have

|foe)(z) — f(z)| <1/k—0 as k— oo.

Thus f¢(§) (IB) — f(l‘)
2. F is a support set for m. Indeed, Let W € R be contained in A and let

&0 = (00, D0, ko) € Z. Then W C Ugse, Wer- Since m is 7-additive, we have

My, (W) < sup my, (Wy).
g6

But, for ¢ = (4,p, k) > &,, we have
My, (Wer) < myp(Wer) < 1/k < 1/k,.

It follows that m,, (W) = 0 for all p, € cs(E), which proves that F is a support
set for m. This completes the proof.

Theorem 4.13 (Dominated Convergence Theorem) Let m € M, (R, E),
where R 1s a o-algebra and E metrizable, and let (f,) be a sequence of inte-
grable functions which converges m-a.e to some f. If there exists an integrable
function g such that |f,| < |g| for all n, then f is integrable and

/fdmzlim/fndm.

Proof : Let p € cs(E) and € > 0. Since g is integrable, there exists a W € R
such that m,(W*) = 0 and ||g|lw < d < co. Each £, is measurable by Theorem
4.7. By Egorofl’s Theorem, there exists A € R, with m,(A°) < ¢/d, such that
fn — [ uniformly on A. Also, there exists an m-negligible set B such that
fn(z) — f(z) for all z € Be. Clearly |f| < |g| on B¢. For each k, there exists
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B, € R with B C By and m,(Bx) < 1/k. The set F = (B is in R and
my(F) = 0. Since f, — f uniformly on A, there exists n, such that

[fn = flla < min{e/d, ¢/|Iml,}.

for all n > n,. Let now n > n,. Since f, is integrable, there exists an R-
partition {4;,..., Ay} of X, which is a refinement of each of the partitions
{F, Fe}, {W,We¢}, {A, A%}, such that, for all 1 < k& < N, we have | fn(z) —
o) - mp(Ax) < € if 2,y € Ay Now, if 2,y € A4, then |f(z) — f(y)] -
mp(Ax) < e. In fact, this is clearly true if Ay C W€ or A, C F. So assume
that Ay C F°NW. Then, for z,y € A;, we have

lf(x) - f(y)) 5 maX{lf(m) - fn(x”v Ifn(x) - fn(y)” |fn(y) - f(y)l}

It follows from this that |f(x) — f(y)| - my(A4x) < e. This proves that f is
m-integrable. Moreover, if 2, € A, then

P (/fdm - Zf(a:k)m(Ak)> , D </ fndm — an(xk)m(Ak)> L6

Also, for 1 < k < N, we have |f(zx) — fu(zk)| - (m(Ax) < €. Indeed, this is
clearly true if A C W€ or Ay, C F. So assume that A, C FenW. If Ap C A,
then

|f (@) = fu(ze)| - p(m(Ax) < |If = falla - [Imll, <,
while for Ay C A¢, we have
|f (@) = falzi)| - p(m(Ar < d-mp(A°) <.

It follows from the above that

p(/fdm—/fndm>§6
/fdm:hm/fndm.

Theorem 4.14 Letm € M,(R, E), where E is metrizable and R a o-algebra,
and let f € KX. Then, f is m-integrable iff it is measurable (equivalently
TR, -cONtinuous) and, for each p € cs(E), there exists a W € R such that
my(We) =0 and f is bounded on W.

for alll n > n,. Thus

Proof :  The necessity follows from Theorems 4.7 and 2.1. Conversely, suppose
that the condition is satisfied. We will show that f is 7-integrable and hence
m-integrable. Let p € cs(E), e > 0 and let W € R be such that f is bounded
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on W and m,(W¢) = 0. Let f; = f - xw. Since f is measurable, it is 7z, -
continuous (by theorem 3.6) and so f; is 7-integrable by [7, Theorem 4.11].
Hence there exists a Rp-partition {Ai,...,A,} of X such that, for all 1 <
k < n, we have | fi(z) — f1(y)|-mp(Ar) < eifz,y € Ay. Let now {By,..., By}
be any R-partition of X which is a refinement of both {4,,...,4,} and
{W,We}. Then, for 1 <k < N and z,y € By, we have | f(z)— f(y)| - mp(B) <
€. Indeed, this clearly holds if B, C W¢. Suppose that By C W. Then f = f;
on By and so |f(z) — f(y)| - m,(Bk) < € since By is contained in some A;. Now
the result follows.

Theorem 4.15 Let m € M,(R,E), where R is a o-algebra, and let (f,) be
a sequence of measurable functions which converges m-a.e. to some f. Then
fn = f in measure and f is measurable,

Proof : Letp € cs(E), a > 0and A, = {z : |fu(z)— f(z)| > o}. Given e > 0,
there exists (by Egoroff’s Theorem) a set A € R, with m,(A°) < ¢, such that
fn — f uniformly on A. Hence, there exists an n, such that || f, — f||4 < a for
all n > n,. Now, for n > n,, we have A, C A° and so mj}(A) < m,(A4°) < e
Hence f, — f in measure. Also f is measurable by Theorem gl 1

Theorem 4.16 m € M. (R,E) and let f € KX be measurable. Then, there
exists a net (g5) in S(R) which converges in measure to f. In case E is
metrizable, there exists a sequence (hy) in S(R) converging to f in measure.

Proof :  We prove first the following

Claim : For each € > 0 and each p € cs(E), there exist A € R, with my(A°) <
€, and g € S(R) such that ||f — g[la < e. In fact, consider the equivalence
relation ~ on X, z ~ y iff | f(z) — f(y)| < e. Let (B;)ie; be the family of all
equivalence classes and let z; € B;. Then B; = {z : |f(z) — f(z;)| < €} and so
B; is measurable since f is measurable. For J C [ finite, let G; = ({,.; Bi)*.
Then G is measurable and G | 0. Since m is 7-additive, there exists a J =
{i1,...,4n} such that m,(G;) < e. For 1 < r < n, there are V., W, € R such
that V C B, CW, and my(W, \V;) <e. Lety, € V,and g =S »_, f(v:)xw

If A=J"_, V,, then

= ﬁVrCCGJU (OWT\VT) :
Thus,
myp(A°) = my(A°) < max {m,(Gy), my(W1 \ V1), ..., m,(Wo \ Vo) } <.

Moreover, if z € A, then z € V;, for some 7, and so |f(z) — g(z)| = |f(z) —
f(yr)| < e thus ||f — g|la < € and the claim follows.
Let now A = {(n,p) : n € N,p € cs(E)}. For § = (n,p) € A, there exist a
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function gs € S(R) and a set G5 € R such that m,(G§) < 1/nand ||g—gs||g, <
1/n. Then g; — f in measure. Indeed, let p, € cs(E) and o, e > 0. Choose
no > 1/a,1/e and set 6, = (ny,p,). If 6 = (n,p) > &,, then

mp, ({Z 1 19s(z) — f(2)| 2 o} < Mmp({z - |gs(z) — F(z)| > o}
< myp({z 1 |gs(z) - f(z)] > 1/n}
<my(G§) <1/n<e.

This proves that gs — f in measure. The last part of the Theorem follows
from Theorem 4.4.

Corollary 4.17 Letm € M, (R, E), where E is metrizable and R a o-algebra,
and let f € KX. Then f is medasurable iff there ezists a sequence (hn) 1n S(R)
converging in measure to f.

Proof : The necessity follows from the preceding Theorem. Conversely let
(hn) in S(R) converging in measure to f. By Theorem 4.6, there exist a
subsequence (hy,) and F' € R such that F is a support set for m and By, ~+
pointwise on F'. Hence f is measurable by Theorem 3.11.

Theorem 4.18 (Lusin’s Theorem) Let m € M,(R, E), where E is metriz-
able and R a o-algebra, and let f € KX. Then f is measurable iff, for each
p € cs(E) and each € > 0, there ezist A € R, with m,(A°) < ¢, and a T-
continuous function g such that f(z) = g(z) for allz € A.

Proof : Suppose that f is measurable and let p € cs(E), € > 0. By the
preceding Corollary, there exists a sequence (h,) in S (R) which converges in
measure to f. Each h, is measurable. By theorem 4.6 there exist a subsequence
(9x) = (hn,) and F € R such that F is a support set for m and g — f
pointwise on F'. By Egoroff’s Theorem, there exists A € R, with mp(A°) < e,
such that gr — f uniformly on A. Since A is 7g-open and each gk 1S Tr-
continuous, it follows that f is 7z-continuous at every point of A. If g=xaif,
then g is 7z-continuous and g = f on A. Conversely, suppose that the condition
is satisfied and let B be a clopen subset of K and p € cs(E). We need to show
that f~'(B) € R,,. For each positive integer k, there exist Ay € R, with
myp(Ag) < 1/k, and a Tr-continuous function uy such that ug = f on Ag. Let

A=|J4A, F=f'B)n4, G=jfYB)n4"
k

Then
F=Jr'®Bn4=Ju'(B)N A
k=1

k=1
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Since uy is Tr-continuous ( and hence 7, -continuous), it follows that uy is
m-measurable and so F' € Rp,. Moreover, G C A¢, for each k, and so

FYUB)AF =G C A,

which implies that d,(f~*(B),F) < m,(A$) < 1/k — 0. This proves that
f~1(B) belongs to the closure of R,, in P(X) and hence f~!(B) € R,,. This
completes the proof.

Definition 4.19 Let m € M(R,E). A sequence (f,) in KX is said to be
Cauchy in measure if, for each p € cs(E) and each a > 0, we have

lim mi({z: |fale) - £(z)] > a}) =0.

n,7—00
We have the following easily verified
Lemma 4.20 If f, — f in measure, then (f,) is Cauchy in measure.

Theorem 4.21 Let m € M,(R, E) and suppose that E is metrizablre and R
a o-algebra. If (f,) is a sequence of measurable functions which is Cauchy in
measure, then there ezists an f such that f, — f in measure.

Proof :  Let (p,) be an increasing sequence of continuous seminorms on E such
that, for each p € cs(F), the exists an n with p < p,. There are n; < ny < ...
such that

My, ({2 2 |fnlz) = fr(2)] > 1/k}) < 1/k

for all n,r > ny. Let hy = f,,, and let A, € R such that My, (Ax) < 1/k and
{z ¢ |he(2) = higa(z)] > 1/k} C A
Let F}, = UiZk A;. Then Fj, € R and
My, (Fi) = sup my, (4;) < supm,, (A4;) < 1/k.

>k >k
On each X \ F;, the sequence (h;) converges uniformly. In fact, let ¢ > 0 and
choose n, > k,1/e. If i,j > n,, then for z ¢ F we have |h;(z) — h;(z)| <
1/n, < e. It follows now that the lim h;(z) exists for every z ¢ F = () F,.
Define f on X by f(z) = limh;(z) when z ¢ F and arbitrarily when z € F.
We will show that f, — f in measure. Indeed, let p € cs(E), & > 0 and € > 0.
Set

Br=A{z:|/falz) - f(z)| 2 a}.
Choose 7 > 1/e such that p < p,, and n, > 1/a. Since h; — f uniformly on

Fy; , there exists j > r,1/o such that |hj(z) — f(z)| < a for all z € F¢ . Let
now n > n;. Then B, C G1|JG,, where

Gr=A{2:|fa(z) = fo, (2)| 2 @}, and Go={z:|fn;(z) - f(z)| > a}.
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Moreover Gy C F,,, and so
my(G2) < mp(Frn,) <my, (F,) <1/r<e.

Also
G1 CH{z : |falz) = fo;(2)] 2 1/5}
and thus
my(G) < my,, (G1) <1/j <

Hence m;(B,) < € for all n > n;. This clearly completes the proof.
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Abstract

For R be a separating algebra of subsets of a set X, E a complete
Hausdorff non-Archimedean locally convex space and m : R — E a
bounded finitely additive measure, it is shown that:

a. If m is o-additive and strongly additive, then m has a unique o-
additive extension m? on the o-algebra R generated by R.

b. If m is strongly additive and 7-additive, then m has a unique 7-
additive extension m” on the o-algebra R% of all 7-Borel sets, where
TR is the topology having R as a basis.

Also, some other results concerning such measures are given.

1 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field,
whose valuation is non-trivial. By a seminorm, on a vector space over K, we
will mean a non-Archimedean seminorm. Similarly, by a locally convex space
we will mean a non-Archimedean locally convex space over K (see [12] or [13]).
For E a locally convex space, we will denote by cs(E) the collection of all
continuous seminorms on E. For X a set, f € KX and A C X, we define

Iflla=sup{lf(z)|:z € A} and |fl|=||fllx-

Also for A C X, A° will be its complement in X and x4 the K-valued char-
acteristic function of A. The family of all subsets of X will be denoted by
P(X).

Assume next that X is a non-empty set and R a separating algebra of
subsets of X, i.e. R is a family of subsets of X such that

45
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1. XeR ,and,if A,B€R,then AUB, AN B, A° are also in R.

2. If z,y are distinct elements of X, then there exists a member of R which
contains z but not y.

Then R is a base for a Hausdorff zero-dimensional topology 7z on X. For E a
locally convex space, we denote by M(R, E) the space of all finitely-additive
measures m : R — E such that m(R) is a bounded subset of E (see [10]). For
anet (Vs) of subsets of X, we write V; | 0 if (V;) is decreasing and NV; = 0. An
element m € M (R, E) is said to be o-additive if m(V,) — 0 for each sequence
(Va) in R which decreases to the empty set. We denote by M,(R,E) the
space of all o-additive members of M(R,E). An m of M(R, E) is said to be
T-additive if m(V;) — 0 for each net (Vj) in R with V; | 0. We will denote by
M- (R, E) the space of all 7-additive members of M (R, E). For m € M(R, E)
and p € cs(F), we define

mp: R =R, my(A) =sup{p(m(V)):V eR,V CA} and |ml|,=my(X).
We also define
Ny : X =R, Npy(z) =inf{m,(V):z € V € R}.

Next we will recall the definition of the integral of an f € KX with respect to
some m € M(R, E). Assume that E is a complete Hausdorff locally convex
space. For A C X, let D4 be the family of all & = {A;, Ay, ..., Ap; 21, 2o, . . . s s
where {4, As, ..., An} is an R-partition of A and z; € A;. We make D, into
a directed set by defining oy > oy if the partition of 4 in «; is a refine-
ment of the one in ay. For o = {A1, Ay, ... Ap; 21,2, ..., 2}, we define
wo(fym) = Y0, f(ze)m(Ax). If the limit limw,(f,m) exists in B, we will
say that f is m-integrable over A and denote this limit by i) 4 fdm . For
A= X, we write simply [ fdm. It is easy to see that if f is m-integrable over
X, then it is m-integrable over every A € R and Jafdm= [xafdm. If fis
bounded on A, then

p (/Afdm) < 1114 - mp(A).

2 Strongly Additive Measures

Throughout the paper, R will be a separating algebra of subsets of a set X ,
E a complete Hausdorff locally convex space and M(R, E) the space of all
bounded E-valued finitely-additive measures on R. We will denote by 75 the
topology on X which has R as a basis. Every member of R is Tr-clopen,
i.e both closed and open. By S(R) we will denote the space of all K-valued
R-simple functions. Asin [10], if m € M(R, E), then a subset A of X is said
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to be m-measurable if the characteristic function x4 is m-integrable. By [10,
Theorem 4.7], A is measurable iff, for each p € cs(E) and each ¢ > 0, there
exist V, Win R such that V. C A C W and m,(W \ V) < e.

Let R, be the family of all m-measurable sets. The following Theorem gives
some results contained in [10] which are needed for the paper.

‘Theorem 2.1 1. Ry, is an algebra of subsets of X.

2.

10.
11.

12;

13.

14.

o RS> v A G

If m:Rp—E, m(A)=[xadm, thenm € M(Rp,, E).
m 18 o-additive iff m is o-additive.

m 18 T-additive iff m 1s T-additive.

For p € cs(E), we have Ny p = Ny, p.

R = Rz

For A € R, we have my(A) = m,(A).

For A € R,,, we have

my(A) = inf{m, (W) : W e R,AC W}.

If m is o-additive and V,, | 0, then m,(V,) — 0.
If m is T-additive and V5 | 0, then m,(V;) — 0.

If m is o-additive and if (V,) is a sequence in R, then for every set V
i R contained in |JV,, we have m,(V) < sup, m,(V,).

If m 1s T-additive and if (Vs) is a family in R, then for every set V in
R contained in |J Vs, we have m,(V') < sups m,(Vs).

An f € KX is m-integrable iff, for each p € cs(E) and each € > 0, there
ezists an R-partition {Ay,..., Ay} of X such that, for each 1 < k < n,
we have | f(z) — f(y)| - myp(Ax) < € if 2,y € Ax. In this case, if 74 € Ay,

then
P ( / fdm—Y" f<xk>m<Ak>> <e

If  m is T-additive, then a subset A of X is measurable iff A is TR, -
clopen.

Definition 2.2 An element m of M(R,E)) is said to be strongly additive

if, for each sequence (A,) of pairwise disjoint members of R, we have that
m(A,) — 0.

47
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It is clear that, if R is a o-algebra and m o-additive, then m is strongly
additive.

Theorem 2.3 For an m € M(R, E), the following are equivalent :

1. m is strongly additive.

2. For each decreasing sequence (An) of members of R, the sequence (m(A4y,))
18 convergent in B.

8. For each sequence (A,) of pairwise disjoint members of R and each p €
cs(E), we have my(A,) — 0.

4. For each decreasing net (V) in R, the net (m(Vs)) converges in E.

9. For each decreasing net (V) in R, each p € cs(E) and each € > 0, there
exists 6, such that m,(VsAVy) < e for all §, 6 > 6,.

6. For each family (V;)ic1, of pairwise disjoint members of R, each p €
cs(E) and each e > 0, there exists J C I finite such that m,(V;) < € for
alli ¢ J.

7. Let (Vi)ier be a family of pairwise disjoint members of R. For J C I
finite, let Wy = J;c; Vi. Then the net (m(W;)) is convergent.

Proof : (1) = (3). Assume the contrary. Then, there exist p € cs(E), e > 0
and ny < np < ... such that m,(A,,) > € for all k. For each k, there exisis a
By, contained in A,, such that p(m(By)) > e. This contradicts our hypothesis
(1).

(3) = (5). Assume that (5) does not hold. Then, there exist p € cs(E) and
€ > 0 such that, for each ¢ there are d;, & > ¢ with m,(V;,AV;,) > e. Thus,
for each 4, there exists § > & such that m, (V5 \ Vy) > €. Now, there exist
01 < 02 < ... such that m,(Vs, \ Vs,,,) > € for all k. If G, = Vj, \V};ﬂH, then
the sets G’ are pairwise disjoint, which contradicts (3).

(5) = (4). Let (V;) be a decreasing net in R and p € c¢s(E). Then, for all 4,
&', we have p(m(V;) — m(Vy) < my(V3AVy). This, by our hypothesis, implies
that the net (m(Vj;)) is Cauchy and hence convergent.

(4) = (2). It is trivial.

(2) = (1). For (An) a sequence of pairwise disjoint members of R, let

(0]

Then (B,) is decreasing and so the sequence (m(B,)) is convergent. Thus,
given p
in cs(E) and € > 0, there exists n, such that

p(m(B, \ Bni1)) = p(m(Bn) — m(Bny1)) < €
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for n > n,. But B, \ Bpt1 = Apy1. Thus m(4,) — 0

(3) = (6). Let (V;)ier be a family of pairwise disjoint members of R and
suppose that, for some p € cs(E) and some € > 0, the set {I € I : m,(V;) > €}
is infinite. Hence there are distinct 4z, £ = 1,2,..., such that m,(V;,) > €},
which contradicts our hypothesis (3).

(6) = (7). Let (V;)ser be a family of pairwise disjoint members of R. For J C I
finite, let W; = J;c; Vi. Let J, be a finite subset of I such that m,(V;) < e.
If now J is any finite subset of I containing J,, then

p(m(Wy) —m(Wy,)) U ¥ = I’I‘lj_?%‘}]( mp(V;) < e.
€
zeJ\J

Hence the net (m(WW;)) is Cauchy and therefore convergent.
(7) = (1). It follows easily.

Definition 2.4 A family H of members of M(R, E), is said to be uniformly
strongly additive iff, for each sequence (A,), of pairwise disjoint members of
R, we have that m(A,) — 0 uniformly for m € H.

Using arguments analogous to the ones used in the proof of Theorem 2.3, we
get the following

Theorem 2.5 For a subset H of M(R, E), the following are equivalent:
1. H 1s uniformly strongly additive.

2. For each sequence (Ay), of pairwise disjoint members of R, and each
p € cs(E), we have that
lim m,(A4,) =0

n—oo

uniformly for m € H.

8. If (Ayn) is a decreasing sequence of members of R, then, for each p €
cs(E) and each € > 0, there ezists n, such that m,(A, \ Az) < € for all
k>n2>n,.

Theorem 2.6 Let H C M, (R, E) be uniformly strongly additive and let (A,,)
be a sequence in R such that A, | 0. Then, for each p € cs(E), myp(A,) = 0
uniformly for m € H.

Proof : Given p € cs(E) and € > 0, there exists n, such that m, (A, \ 4z) < €
forallk>n>noandeachmeH Let now n > n,. For k > n, we have
A, = (A \ Ar) U 4x and so

Mp(An) = max{my(An \ Az), my(Ax)} < max{e, my(Ax)}.

Since m,(Ar) — 0 when k — oo, it follows that mp(A,) < eforalln > n, and
all m € H. This completes the proof.
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Theorem 2.7 (Nikodym Boundedness Theorem) Assume that R is a
o-algebra and let H be a subset of M(R,E) consisting of strongly additive
measures. If, for each A € R, the set H(A) = {m(A) : m € H} is bounded
in E, then the set H(R) = {m(A) : A€ R,m € H} is bounded, equivalently
SUPex |lml, < 0o for each p € cs(E).

Proof : Assume the contrary. Then, there exist a p € cs(E) and a sequence
(mn) in H such that sup, |m,l|, = co.

Claim I If G € R is such that sup,,(m,),(G) = oo, then, for each a: > 0, there
exist an n and an R-partition {4, B} of G such that p(m,(A)) = p(m.(B)) >
a. Indeed, there exist an n and A € R, A C G, such that

p(mn(4)) > maX{msipp(mk(G))} > max{a, p(m,(G))}.

If B=G\ A, then
p(mn(4)) > p(mn(G)) = p(mn(A) + mu(B)).

Thus p(mn(A)) = p(mn(B)) > a. Let now n, be a positive integer and
{A1, B1} an R-partition of X such that p(mn, (A1) = p(ma, (B;)) > 1. One of
the sup, (mn), (A1), sup,(mn),(B1) must be infinite. If the former is infinite,
take G1 = A, and Fy = By, otherwise take G; = B; and F} = Aj. Let ng > ng
and {As, By} an R-partition of G; such that

P(1Mny (A2)) = p(min,(B2)) > max{2, sup p(mi(F1))} 2 max{2, p(ma, (F1))}.

One of the sup,,(mn),(A2), sup,(mn),(B2) must be infinite. If the former is
infinite, take G, = Ay and Fy = B,, otherwise take G, = B, and F;, = A,.
We continue using the same argument and get by induction a sequence (Fy),
of pairwise disjoint members of R, and n; < ny < ... such that

p(mnk (Fk)) b ma‘X{ka gfﬁp(mnk (‘FJ))}

Let uy = my,. Claim II : For each m € H and each infinite subset  of
N, there exists an infinite subset Z of € such that g (Une z Fn) < 1. Indeed,
there exists an infinite partition £;,Qs,... of  into infinite sets. The sets
Iy = Uneﬂk F,, k € N, are pairwise disjoint members of R. Since m is
strongly additive, there exists a k such that m,(Dy) < 1.

Let now r; = 1, Wy ; = F; for j € N. By the preceding Claim, there exists a
subsequence (Wy;) of (Wy;), with Wy = F,, and 75 > 71, such that

(Kors )p (U W2,j> <L
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Next, there exists a subsequence (W3 ;) of (W5 ;), with W3, = F,,, and 73 > 79,

such that
o () <1

3

We continue the same argument using induction. Let W = (J2, F;,. For each
7 we have

/J’Tj(W) - Nrj(Frj) + L, (U Frk> T+ (U F?”k) :

k<j k>3

Now p [pr; (Fr;)] > 75 2 1, (1ar,)p (Uk>j Frk> <1 and

p </J’7'j (U F"‘k)) < p(Urj (Frj))-

k<j

Thus p(ur, (W)) = p(ur; (Fr;)) > r; and so sup; p(ur, (W)) = oo, a contradic-
tion. This completes the proof.

Theorem 2.8 If m € M(R, E) is strongly additive, then m € M(Rp,, E) is
also strongly additive.

Proof :  Let (A,) be a sequence, of pairwise disjoint members of R,,, and
let p € cs(E) and € > 0. For each n, there exist V,,W,, in R such that
Vo C An C Wy and myp(W,\V,) < €. As m is strongly additive, there exists n,
such that my,(V;) < e for each n > n,. If now n > n,, then 4, C V,, J(W,\V,)
and so

Mp(An) < max{m,(W, \ Vo), m,(V)} < e.

Hence m is strongly additive.

3 Absolute Continuity

Definition 3.1 An element m of M(R, E) is said to be absolutely continuous
with respect to some u € M(R), and write m < u, if

lim m,(A) =0
|ul(4)—0 p(4)

for each p € cs(E). Equivalently, for each p € cs(E) and each € > 0, there
ezists § > 0 such that my(A) < e for each A € R with |u|(A4) < 6.

Theorem 3.2 Let u € M,(R) and m € M,(R,E). If R is a o-algebra, then
m < p iff m(A) =0 for each A € R with |u|(A) = 0.

ol
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Proof : The condition is clearly necessary. Conversely, suppose that the
condition is satisfied but m is not u-absolutely continuous. Then there exist
p € cs(E) and € > 0 and a sequence (4,) in R, with |u|(4,) < 1/n, such that
my(An) > € for all n. let G, = U5, 4k, G =) Gn. Then

ul(G) < [ul(Gr) = g |ul(Ak) < 1/n — 0.

By our hypothesis, m,(G) = 0. Let G, = X and B, = G,_1 \ G, for each n €
N. The sequence (B,) consists of pairwise disjoint members of R. Moreover
Gn \ G = Uysp Br and so my(G, \ G) — 0. Also, 4, C G, = GU(G, \ G)

and hence
Myp(An) < max{my(G), my(Gn \ G)} = mp(Gn \ G) = 0
as n — oo. This completes the proof

Theorem 3.3 Letm € M(R,E) and p € M(R) be such that m < . Then :
1. Ry C Rom.
2, If my = mlRw then m; <K ﬂ

Proof - 1. Assume that A € R, and let p € cs(E) and € > 0. Since m < p,
there exists § > 0 such that m,(B) < e if |u|(B) < 6. As A € R,, there
are VW € R, with V. C A C W, such that |u|(W \ V) < 6. But then
mp(W \ V) < ¢, which proves that A is in R,,.
2. Let p € cs(E) and € > 0. There exists § > 0 such that m,(B) < € if
|u|(B) < 6. Let now A € R, with (72),(A) < 6. We will show that mp(A) < e.
In fact, there are V,W € R, with V C A C W, such that |u|(W\ V) < 6. But
then,

mMp(WA\V)=m,(W\V) <e
Also

[ul(V) = [Bl(V) < |BI(4) <6
and hence m, (V) = m, (V) < e. Since A C VJ(W \ V), we have that

My (A) < max{m,(V), m,(W\ V)} <e.
Hence the result follows.

Definition 3.4 Let p € M(R). A collection H C M(R,E) is said to be
uniformly absolutely continuous with respect to w if, for each p € cs(E), we
have

lim sup m,(A) = 0.
l(A) 0 ey »(4)
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Theorem 3.5 Let H be a uniformly strongly additive subset of M(R, E) and
let 4 € M(R) be such that m < u for each m € H. Then H is uniformly
absolutely continuous with respect to p.

Proof : Assume the contrary. Then, there exist p € cs(E) and € > 0 such
that, for each § > 0, there are m € H and A € R such that |u|(A) < ¢ and
my(A) > €. Let Ay € R, my € H, & = 1 be such that |u|(4;) < & and
(m1)p(A1) > €. Since my < p, there exists 6 > 0 such that, if |u|(A4) < J,,
then (m;),(A) < e. There exist A; € R and m, € H such that |u|(42) < 6,
and (my),(A42) > €. Next there exists 65 > 0 such that, if |u|(A) < &3, then
(m1)p(A) < € and (m2),(A) < e. Let ms € H and A; € R be such that
|1l (As) < 03 and (m3),(As) > e. Inductively, we get a sequence (m,,) in H and
a sequence (A,) in R such that (my,),(An) > € and (my),(4,) < € if k < n.
Claim There are n, = 1 < ny < ny < ... < my such that, for G, = A,
G1 =G, \ A, ...,Gr = Gy_1\ A, we have

L. (M, JplGi-1 N Ay, ) 6 for f=1,2,, ..,k
2. (mn)p(Gr N A,) < e for every n > ny.

In fact, if (mn),(G, N Ay) < € for every n > 1, take k = 0, n, = 1. Otherwise,
choose ny > n, = 1 such that (my,),(Go N Apn,) > € and let Gy = G, \ Ay,
If (mn)p(G1N Ap) < efor all n > ny, take k = 1. Otherwise, choose ny > ny
such that (mg,),(G1 N Ap,) > € and let Gy = Gy \ An,. If this process does
not eventually terminate, we find by induction n, =1 < n; < ny ... such that,
for G, = A; and Gy = Gg_1 \ 4n,, for k > 1, we have (M )p(Gr—1 N Ay,) > €
for all K > 1. Let Dy = G—1 \ Gk, k > 1. The sets Dy are pairwise disjoint.
Moreover, Dy = Gr_1NAp, and so (my, ),(Dy) > ¢, for all k, which contradicts
the fact that H is uniformly strongly additive. Hence the claim holds. Let
now n, =1<mn; <ny <...<ng be as in the claim. Since

k
Al = [UAlﬂAnJ UGk

j=1
and (mi1)p(41) > € while (mq1),(4; N 4,,) < (m1)p(An;) < € for 7 < k, it
follows that (m,),(Gx) > €. Let F; = Gy, C A; and 7, = ng. For n > 7y, let
B, = Ay \F1. Let n > r1. Then A, = (4,NF,)UB,. Since (mp)p(AnNFY) < e
and (mn),(An) > ¢, it follows that (my,),(B,) > €. Also, for 11 < n < N, we
have (mn),(Bn) < (mn)p(An) < €. Now, we can apply the same argument as
above, replacing (An) by (Bn)nsr, and (my) by (mn)nsr,. We will then get an
.72 > 71 and F3 C By such that (my,41),(F2) > € and (m,,),(Fo N B,) < ¢ for
alln > ry. For n > ry, let Z, = B, \ Fy. Since B, = (B, N F5)U Z,, and since
(mn)p(BaNFy) < €, while (my),(By) > €, we get that (my,),(Z,) > €. Also, for
re <n < N, we have (m,),(Zn) < (m,),(By) < €. Thus we may repeat the
same argumrent for the sequences (Z,)n>r, and (mn)nsr,. Inductively, we get
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a sequence (F}), of pairwise disjoint members of R, and a sequence (m,) in H
such that (my),(Fy) > e. This contradicts our hypothesis that H is uniformly
strongly additive. Hence the result follows.

4 Extensions of o-Additive Measures

In this section we will examine the problem of extending an m € M(R, E) to
a o-additive measure defined on a o-algebra containing R. In order for such
an extension to exist, it is clearly necessary that m is o-additive and strongly
additive. We will show that these two conditions are also sufficient.
Throughout the rest of this section, m will be a strongly additive
member of M, (R, E).

For p € cs(E), we define

my : P(X) = R,  1M,(A) = infsupm,(V,),

where the infimum is taken over the collection of all sequences (V,) in R which
cover A. It is easy to show that 71,(4A U B) = max{rh,(4), m,(B)}.

Lemma 4.1 m,(A) = m,(A) for all A€ R.

Proof : Clearly 7m,(A) < my,(A). On the other hand, if (V},) is a sequence in
R covering A, then m,(A) < sup, m,(V,) since m is o-additive. This implies
that i, (A4) > m,(4).

Let now

~ ~

dp: P(X) x P(X) =R, dy(A,B) =1m,(AAB),

where AAB = (A\ B)|J(B\ A). Then d,, is an ultrapseudometric on P(X).

Let U7, be the uniformity induced by the pseudometrics a?p, p € cs(E). For
the map

m: R — E,

we have p(m(A) —m(B)) < dp(A, B). Thus m is Uy -uniformly continuous and
hence there exists a unique uniformly continuous extension

-
m?: Ry — E,

where R, is the closure of R in P(X) with respect to the topology induced
by U7, .

Lemma 4.2 R,, isa separating algebra of subsets of X andm'® € M (R, E).
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Proof : Let A,B € R, p € cs(E) and € > 0. There are Vi, V, in R such that
Mmp(AAVY) <€, Mp(BAVL) <e. IV =V UV, and W =V, N Vs, then

(AUB)AV C (AAV1) U (BAV,), (ANB)AW C (AAVY) U (BAVS)
and A°AV® = AAV;. Hence
mp((AUB)AV) <€, my((ANB)AW) <e, m,(AAVE) <€

which proves that the sets AU B, AN B and A°® are in R,,. Also A\ B =
AN B¢ e R, and so R, is an algebra. Since

m?(Rm) C m(R).

it follows that m' is bounded. Finally we need to show that m'® is finitely
additive. To this end, we consider the set

A ={(p,n) :p € cs(E),n € N}

and make A into a directed set by defining (pl,m) (p2, no) iff p; > py and
ny > ny. Let now A, B be disjoint members of R,,. For each § = (p,m) in A,
there are Vs, Ws in R such that

My (AAVs) < 1/n, m,(BAW;) < 1/n.
Now the nets (V;), (Ws) converge to A, B, respectively, with respect to the
uniformity UZ. If Zs = W; \ Vs, then BAZ; C (AAV5) U (BAWS), which
implies that Zs — B. If Fs =V;U Zs; and D = AU B, then
DAF; C (AAV;;) U (BAZg)

and hence Fy — D. Thus

m (D) = limm(V; U Z5) = lim[m (V)+ (25)]

= limm(V;) + limm(Zs) = m'°(A) +m'°(B).
This completes the proof.
Lemma 4.3 1. For A,B C X, we have
]mp(A) - mp(BH = mp(AAB)~

2. If A,B € R,,, then

Imy (A4) — m,7 (B )| < m7(AAB).
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Proof : 1. Suppose (say) that
Mp(A) — My (B)| > my(AAB).
Since A = (AN B) U (A\ B), we have
1y (A) = max{m, (AN B),m,(A\ B)} = m,(AN B) < 7,(B),

a contradiction.
2. The proof is analogous to that of (1).

Lemma 4.4 1. For G € R, we have m;,"(G') = my(G).
2. If A € Ro, then m?(A) = my(A).

Proof : 1. It is clear that m,(G) < m7(G). On the other hand, let B € R, be
contained in G. There exists a net (V) in R converging to B in the uniformity
Ug,. Then Vs;N G —- BN G = B. Thus

p(m'*(B)) = limp(m'* (Vs N G)) = limp(m(Vs N G)) < m,(G),

which proves that m?(G) < m,(G).

2. Let B € R,,, B C A. There exists a net (Ws) in R converging to B. But
then WsN A — BN A= B. Thus

p(m?(B)) = limp(m"” (W5 N A)).
Since
p(m (W50 A) < my? (Ws) = imy(W5) and 1y (Ws) — 101,(B) < 1y (A)

(by the preceding Lemma), we get that m;,"(A) < 1p(A). If (Vs) isanetin R
which converges to A in the uniformity 22, then

75 (Vs) = my7 (A)] = |my7 (Vs) — my (A))
<m7(AAV;) < my(AAV;) — 0
and so 1y, (V) — m7(A). Also 7, (Vs) — my(A), by the preceding Lemma,
and hence m. 7 (A) = h,(A).
Lemma 4.5 Npp = N, 1. .

Proof : Suppose that, for some z € X, we have Npp(z) > a > Nowlo 5(2)-
There exists A € R, containing z, such that m;"(A) < a Let V € R be
such that m;”(AAV) = my(AAV) < a. There is a sequence (G) in R, with
AAV C |JGk, such that m,(Gy) < « for al k. As Npp(z) > o, we have

that z ¢ (JGy and so 2 ¢ AAV, which implies that £ € V. Moreover,
VAUV \ A) and thus

Ninp(2) < mp(V) = m7 (V) < max{m;(4),m?(V\ A)} < o,

a contradiction.



Extensions of p-Adic Measures 57

Lemma 4.6 R, is a o-algebra and m'® is o-additive.

Proof :  We prove first that m'? is strongly additive. Indeed, let (A,) be
a sequence of pairwise disjoint members of R,,, p € cs(E) and € > 0. For
each n, there exists V,, € R with m;“(AnAVn) <e Let Wy =V, Wpyy =
Va1 \ Ur=; V. Then

n+1
Ani1DWai € | Ae2Vi
k=1
and so m;;’(AnHAWnH) < e Thesets W,, n=1,2,..., are pairwise disjoint.

Since m is strongly additive, there exists n, such that my(Wp) < € for n > n,,.
Now, for n > n,, we have A, = (A, N W,,) J(A4, \ W,,) and hence

m;f(An) = max{m;,"(An N W), m;f’(An \ W)}
< max{mJ (Wn), mp(A, AW,)}
= max{my,(W,), M, (A, AW,)} < e.

This proves that m'? is strongly additive. Next we show that R is a o-algebra.
In fact, let (A,) be a sequence in R,, and A = (J A,. We need to show that
AeR,, We may assume that the sets A, are pairwise disjoint. Let p € cs(E)
and € > 0. For each n there exists V,, € R such that mp(AnAV,) < e Let
W1 = ‘/1, Wn+1 = Vn+1 \ UZ:I V}C Then mp(An+1 \Wn—l—l) < €. Since the sets
Wi, are pairwise disjoint, there exists n such that m,(W,) < ¢ for all k > n.

o G (0]

k=1 k>n

For each k there is a sequence (By;)$2;) in R, such that A AW), C |, By and
mp(B;“) <e If G=AA (UZO=1 Wk) . then

G C UAkAWk (- UBki
k

ki
and hence 77, (G) < supy ;my(Bis) < €. Also, for F = J,,, Wi, we have

iy (F) < sup m,(Wy) < e.
k>n
Thus
mp(AA( k=1 Wi)) < max{ﬁzp(F),mp(G)} <€,

which proves that 4 € R,,.
Finally, m'? is o-additive. In fact, let (An) C Ry, An L 0. Let B, = Ap\ Apt1.
The sets B, are pairwise disjoint. Since m'? is strongly additive, there exists
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N such that m7(B,) = mhy(B,) < e for all n > N. Let n > N. Then
An = Ugsp Br- For each k > n, there is a sequence (Gj;)2, in R such that

By, C |J; Bxi and my,(By;) < €. Now A, C Uksn Ui Bri and so

Mp(An) < SUpSID mp(Bri) < €.

This proves that m;f’(An) — 0 and so m'? is o-additive. This completes the
proof.

Combining the preceding Lemmas, we get the following extension

Theorem 4.7 Let m € M, (R, E) be strongly additive. If R® is the o-algebra
generated by R, then there exrists a unique ertension m° € M,(R?,E) of m.
Moreover Ny, p = Nyo .

Proof : Since R,, is a o-algebra, it follows that R is contained in R,,. Thus
the restrtiction m? of m'® to R is a o-additive extension of m. To prove the
uniqueness, let u € M,(R?, E) be an extension of m and let

F={AeR: u(4) =m*(4)}

It is easy to see that, if A € F, then A° € F. The family F is a monotone
class. Indeed, let (A,) be a sequence in F with A, | A. Then

p(A) = lim p(A,) = limm(4,) = m?(A).

Similarly, if (B,) C F and B, 1 B, then m?(B) = u(B). Hence F is a
monotone class. Since R is the monotone class generated by R (by [6],
Theorem B on p. 27), it follows that F = R° and so u = m?. The equality
Nmp = Npeo p is a consequence of Lemma, 4.5.

Theorem 4.8 For A€ R and p € cs(E), we have mg(A) = mJ7 (A).

Proof : It is clear that mJ(A) < m.?(A). On the other hand, let B € R,
B C A. There exists a net (V5) in R converging to B with respect to the
uniformity Ug7,. But then ;N A — BN A = B. Hence

!

p(m?(B)) =limp(m (AN V;)) = limp(m (4 N V5)).

Since p(m? (A N V5)) < mg(A), it follows that p(m'?(B)) < mg (A), which
proves that mg(4) > m;f’(A). This completes the proof.

Theorem 4.9 Let m € M,(R,E) and u € M,(R) both be strongly additive
and suppose that m < . Then m® < u°.
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Proof : Let p € ¢s(E) and € > 0. There exists a § > 0 such that, for 4 € R,
if |u[(A) < 4, then m,(A) < e. Assume now A € R and |u?|(A4) < 6. There
is a sequence (V) in R such that A C |JV,, and |u|(V,) < § for every n. But
then mJ (V) = m,(Va) < ¢, for every n, and so

my (A) <supm; (Vo) < e

This clearly completes the proof.
Theorem 4.10 R, = RZ, and m'® = me .

Proof :  Let A € R,,. Given p € c¢s(B) and € > 0, there exists V € R
such that 7,(AAV) < e. Next, there is a sequence (G,) in R such that
ANV € G =JG, and m,(G,) < eforalln. Then G € R°. f B=V NG°
and FF=V UG, then BC AC F and F\ B = G. Moreover

m, (G) = supm; (Gr) = supm,(G,) < e.

This proves that A € R7,. Moreover, if A; = B, Ay = G and A; = F°, then
{A1, A;, A3} is an R7-partition of X and, for f = x4, we have that

|F(z) = f(y)] - mg(Ax) <,
if z,y € Ay. If 25, € Ay, then

= p ( [ £ame - kZ;f(:ck)m”(Ak)) —p ( [ fame —me(3) - f(xz)m"(G)> .

But

!

p(m(A) —m?(B)) = p(m"*(A\ B)) < m7(A\ B) < m?(F\B) = m(G) <
and p(m?(G)) < mJ(G) < e. Thus

p ( [ s ame - m’“(A)) <e

m’”(A):/fdm”:W(A).

Conversely, let A € RZ. There are B,F € R°, with B C A C F and
mg(F\ B) <e. Now AAB C F\ B and

It follows that

p(AAB) <1, (F \ B) = my (F\ B) <,

which proves that A is in the closure of R” with respect to the uniformity Uz
and hence A € R,, . This completes the proof.
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5 Extensions of 7-Additive Measures

Throughout this section, unless it is stated explicitly otherwise, m
will be an element of M, (R, E) which is strongly additive.
For p € cs(E), we define

Ty P(X) = R, 1,(A) = inf sup m, (G;),

1

where the infimum is taken over the collection of all families (G;);ser of members
of R which cover A. It is easy to show that

(A U B) = max{r,(A), t,(B)}.

Let
d,: P(X) x P(X) =R, dy(A, B) =m,(AAB).

Then J is an ultrapseudometric on P(X ) and cZ < a?p. Let U] be the uni-
formity induced by the pseudometrics dp, p € cs(E). Then U is coarser than

UZ. If R, is the closure of R in P(X) with respect to the topology induced
by R, , then "R;'n CRI.

Lemma 5.1 For A € R, we have that m,(A) = th,(A).
Proof - Clearly m,(A) > m,(A). On the other hand, if (G;) is a family of

members of R covering A, then m,(A) < sup, m,(G;), since m is T-additive,
which implies that m,(A4) < mr,(A).
Now for the map m : R — E, we have

p(m(A) ~ m(B)) < m,(AAB) = i, AAB).

Thus m is uniformly continuous for the uniformity 1nduced on R by U, . Hence,
there exists a unique uniformly continuous extension m'™ s R~ E

The proofs of the following two Lemmas are analogous to the ones of Lemmas
4.2 and 4.3, respectively.

Lemma 5.2 R,, is an algebra of subsets of X and m'™ M(ﬁ,m, E).
Lemma 5.3 1. For A, B subsets of X, we have

[tr(A) — thy(B)| < hp(AAB)
2. If A,B € R,,, then

]m;f(A) —m T(B)| < m T(AAB).
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Lemma 5.4 1. For A€ R, we have my(A) = m,(4).

2. If A € Ry, then th,(A) = mT(A).

p

Proof : 1. Let A € R. By Lemma 5.1 we have m,(A) = rh,(A). Clearly
m;) (A) > my(A). On the other hand, if B € R,, is contained in A, then there

exists a net (V5) in R which converges to B for the uniformity 7. But then
VﬂﬁA—)BﬂA B and so

p(m™(B)) = limp(m(V; N A)) < my(A).
This proves that m;(A) < m,(4) < m, (A).
2. Let A € Ry, First we show that m,7(4) < r,(A). Indeed, let B € R,

be contained in A. There exists a net (W;) in R converging to B for the
uniformity ¢],. Then WsN A — BN A= B and so

p(m7(B)) = limp(m™ (W; N A)).
But
p(m"(Ws N A)) < m] (Ws) = rhy(Ws) — 1y (B) < 17,(A)

and hence p(m'™(B)) < 7%,(A), which proves that hp(A) > mJ(A). Since
A € R, there exists a net (Vs) in R converging to A. Then

[ (Vs) = my (4)] = Im] (Va) = my ()] < myy (V;AA) < (Vi AA) -

which implies that m(4) = lim,(V;). Also, by the preceding Lemma,
hy(Vs) — 1y(A). Hence thy,(A) = m;f (A). This completes the proof.

The proof of the next Lemma is analogous to the one of Lemma, 4.5.

Lemma 5.5 N, , = Nm/,,p

Lemma 5.6 R, is a o- algebm which contains the o-algebra R of all T5-
Borel sets. Moreover, m™ is T-additive.

Proof - Claim I. For each family (A;);e; of subsets of X and A = [J 4;, we
have 1, (A4) = sup;7M,(A;) = d. In fact, let o > d. For each 4, there exists
a family F; of members of R such that 4; C |JF; and m,(B) < o for every
BeF. It F=, %, then A C |JF and m,(B) < «, for each B € F, which
implies that 77,(A) < o. It follows that 7h,(A4) < d < 77, (A).

Claim IT. m'™ is strongly additive. Indeed, let (A4,) be a sequence of pairwise
disjoint members of R, and let p € cs(E) and € > 0. For each n, there exists
Va € R such that m,(4,AV,) <e. Let Wy =V; and Wypq = Viyy \ Ur—1 V-
Then m,(Ap+1AW,y1) < €. The sets W, are pairwise disjoint. Since m is
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strongly additive, there exists n, such that m,(W,) < € for all n > n,. Now,
for n > n,, we have 4, = (A, N W,,) U(4, \ W,,) and hence

m;T(An) < max{m;,T(An NW,), m;,T (A, \ W)}
< max{m;,T(Wn), m;T(AnAWn)} < €,

and the claim follows. 5
Claim III . R,, is a o-algebra. In fact, let (An) be a sequence in R,, and
A = [JA,. We may assume that the sets A, are pairwise disjoint. Given
p € cs(E) and € > 0, there is a sequence (W,,) of pairwise disjoint members
of R such that m,(A,AW,) < € for every n. As the sets W, are pairwise
disjoint, there exists n such that m,(W;) < € for all £ > n. Now

O e

k=1 L k>n
C U AchWk} U [U Wk:l :
Lk=1 k>n

In view of Claim I, we get that rn, (AA (Ur_, Wi)) < e. This proves that
AcRy.

Claim IV . Every 7r-closed set is in R,, and so R is contained in Rom.
Indeed, if A is 7r-closed, then the exists a decreasing net (V5) in R with
A =) Vs. Since m is strongly additive, the exists , such that my(Vs, \Vs) < ¢
for all 6 > 6,. Since A° = J;s 4 VF, we get that

ANVs, = Ve, \ Vs andso my(A°NVj) <e

§>6,

But A°N Vs, = AAV;,. This proves that A € R, and the claim follows.
Claim V . m'" is r-additive. In fact, let As) be a net in R,, with A; | 0.
Since m'™ is strongly additive, given p € c¢s(F) and € > 0, there exists &, such
that m;,T(Aga \As) <eforall§ >4, As A; = Usss, 4s, \ As, we get that

my (As,) = 1hy(As,) = sup (A5, \ As) = sup m, (As, \ As) < .
§>60 6>d0

Hence limm,] (As) = 0 and so m'™ is T-additive.

Theorem 5.7 If m" is the restriction of m™ to R, then m™ € M,(R*, E)
is the unique T-additive extension of m to R*. Moreover m’|ge = m?°.

Proof : Assume that y € M, (R, E) is an extension of m. We first show that
#(A) = m7(A) for each rr-closed set A. Indeed, there exists a decreasing net
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(Vs) in R with A =(V;. Let Bs = A°NV;. Then B; | 0 and so m™(B;) = 0
and p(Bs) — 0. Since Vz = AU B6, we have that

w(A) —m™(A) = m'(Bs) — u(Bs) — 0,

and hence u(A) = m"(A). Also u(B) = m”(B) for each Tr-open set B since
u(X) =m7(X). For A a 7z-open set and B a 7r-closed set , we have that

(AN B) = u(A) — (AN B®) =m™(A) — m" (AN B°) = m" (AN B).

It is easy to show that the family F of all finite unions of sets of the form ANB,
where A is T7z-open and B 7r-closed, is an algebra. Moreover, every member
of F is a finite union of pairwise disjoint membres of F. Thus u(G) = m’(G)
for every member G of F. It is clear that R% coincides with the o-algebra
generated by F. As F is an algebra, R% coincides with the monotone class
generated by F (by Halmos [6], Theorem B on p. 27). The class F, of all
members A of R for which u(A) = m7(A), is monotone. It follows that
p=m" on R*. Finaly, if m; = m” |re, then my is a o-additive extension of
m and thus m; = m? by the uniqunees part of Theorem 4.7. This completes
the proof.

The proof of the following Theorem is analogous to the one of Theorem
4.8.

!

Theorem 5.8 For A € R and p € cs(E), we have my(A4) = m] (A).

Theorem 5.9 For A€ R’ and p € cs(E), we have mg (A) = m](A).

Proof : There exists a net (V) in R which converges to A with respect to the
uniformity y,. Since Uy, is coarser than U2, (V;) converges to A with respect
to U] Now

my (Vs) = my(A) and m] (V) — my (A).

Since myg (V5) = m7(Vs) = my(Vs) , the Theorem follows.

Theorem 5.10 R,, = R and m'™ = m7.

Proof : Let A € R,,. Given p € c¢s(E) and € > 0, there exists V € R with
mp(AAV) < e. Let (G) be a family in R such that AAV c G = |JG; and
mp(G;) < efor every ¢. f B=VNG°and F =V UG, then BC A C F.
Moreover F'\ B = G and

my(G) = supmy(G;) = supmy(G;) < e

T

This proves that A € R%. Moreover, if B; = B, B, = G and B; = F*, then
{B1, By, B3} is an R-partition of X and, for f = x4, we have

[f(2) = f(W)]-mg(Bi) < e
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if z,y € By. If z, € By, then

e>p ( / fam = f(xomT(Bk))
k=1

=p(m7(A) —m"(B) — f(z2)m"(G)).
But

/)

p(m7(A) —m"(B)) = p(m” (A\ B)) < 17,(G) =my(G) < e
and p(m'(G)) < my(G) < e. Thus

7

This proves that m™(4) = m7(A).
Conversely, let A € R. Then there are B, F € R such that B C A C F
and m;(F \ B) < e. Now AAB C F\ B and

mp(AAB) < 1h,(F\ B) = my, (F\ B) <,
which proves that A is in the closure of R in P(X) with respect to the uni-
formity U;,. Hence A € R,,. This completes the proof.

The proof of the following Theorem is analogous to the one of Theorem
4.9.

Theorem 5.11 Let m € M.(R, E) and p € M,(R) be both strongly additive.
If m < u, then m™ < u".

Theorem 5.12 Let m € M(R,E) be strongly additive and let f € KX be
m-integrable. Then:

1. If m s o-additive, the f is m?-integrable and [ fdm = [ fdm° .

2. If m 1s T-additive, then f is m"-integrable and [ fdm = [ fdm" .

Proof - 1. Assume that m is o-additive and let p € cs(E) and € > 0. Since f
is m-integrable, there exists an R-partition {A;, A5 ..., A,} of X such that

[f (@) = F ()] - mp(Ar) <€

if 2,y € Ag. Since mg(Ag) = my(Ag), it follows that f is m°-integrable.
Moreover, if z, € Ay, then

D (/fdm — Zf(xk)m(Ak)> <e and p (/fdm" — Zf(a:k)m"(Ak)> <,

which implies that p ([ fdm — [ f dm?) < e. It follows that [ f dm = [ fdm°
since F is Hausdorff.
2. The proof is analogous to that of (1).
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ON THE EXISTENCE OF POSITIVE SOLUTIONS ON THE
HALF-LINE TO NONLINEAR TWO-DIMENSIONAL DELAY
DIFFERENTIAL SYSTEMS

CH. G. PHILOS

ABSTRACT. The paper is concerned with a boundary value problem on the
half-line to nonlinear two-dimensional delay differential systems with positive
delays. A theorem is established, which provides sufficient conditions for the
existence of positive solutions. The application of this theorem to the special
case of second order nonlinear delay differential equations is given. Also, the
application of the theorem to two-dimensional Emden-Fowler type delay dif-
ferential systems with constant delays is presented. Moreover, some general
examples demonstrating the applicability of the theorem are included.

1. INTRODUCTION

Recently, the author [31] established sufficient conditions for the existence of
positive increasing solutions of a boundary value problem on the half-line to second
order nonlinear delay differential equations with positive delays. The assumption
that the delays are positive is essential to the approach in [31], and hence the results
given in [31] cannot be applied to the corresponding boundary value problem for
second order nonlinear ordinary differential equations. An old idea that appeared
in the author’s paper [30] plays a crucial role in the study in [31]. (Grains of this
idea were presented in the old paper by Lovelady [19].)

Also, recently, the author [32] studied the problem of the existence of solutions
and of the existence and uniqueness of solutions of a boundary value problem on
the half-line to nonlinear two-dimensional delay differential systems. The methods
applied in [32] are based on the use of the Schauder-Tikhonov theorem and the
Banach contraction principle. The results obtained in [32] include, as special cases,
those given by Mavridis, the present author and Tsamatos [20] for second order
nonlinear delay differential equations.

The work in [31, 32] is closely related to the work in the papers by Mavridis, the
author and Tsamatos [20, 21] and, in a sense, to the work in the paper by Agarwal,
the author and Tsamatos [2].

The present paper is essentially motivated by the recent work in [31] (and, in
a sense, by the recent work in [32]). In this paper, a boundary value problem on
the half-line to nonlinear two-dimensional delay differential systems with positive
delays is considered, and sufficient conditions are given that guarantee the exisence
of positive solutions. The results obtained are not applicable to the correspond-
ing boundary value problem for nonlinear two-dimensional ordinary differential

2000 Mathematics Subject Classification. 34K10, 34B18, 34B40.
Key words and phrases. Delay differential system, boundary value problem on the half-line,
positive solution.
67
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systems. The results given in [31] can be derived, as special consequences, from

the ones established here, by reducing a second order nonlinear delay differential

equation to a nonlinear two-dimensional delay differential system of a special form.

The techniques applied in this paper are originated in the ones in [31]; also, some

elements of the methods used in [32] are succesfully employed in the present paper.
Consider the nonlinear two-dimensional delay differential system

(1.1) ) =9ty®), V) =-ftzt-T10), ..zt~ Tn))),

where m is a positive integer, g is a continuous real-valued function on [0, 00) X R,
f is a continuous real-valued function on [0,00) X R™, and T; (j = 1,...,m) are
positive continuous real-valued functions on the interval [0, c0) with

Jim (= T(©) =o0 (G =1,.m).
Let us consider the positive real number 7 defined by

7=—, min min(-T;).

Our interest will be concentrated on global solutions of the delay differential
system (1.1), i.e., on solutions of (1.1) on the whole interval [0,c0). By a solution
on [0,00) of (1.1), we mean a pair of two continuous real-valued functions = and
y defined on the intervals [—7, 00) and [0, c0), respectively, which are continuously
differentiable on [0, co) and satisfy (1.1) for all ¢ > 0.

Together with the delay differential system (1.1), we specify an initial condition
of the form

(1.2) z(t) =¢(t) for —7<t <0,

where the initial function ¢ is a given continuous real-valued fucntion on the interval
[—7,0]. Throughout the paper, it will be assumed that

$(0) =0.
Moreover, along with (1.1), we impose the condition
(1.3) limy(t) =0.

The delay differential system (1.1) together with the conditions (1.2) and (1.3)
constitute a boundary value problem (BVP, for short) on the half-line. A solution
on [0, c0) of (1.1) satisfying (1.2) and (1.3) is said to be a solution of the boundary
value problem (1.1)—(1.3) or, more briefly, a solution of the BVP (1.1)—(1.3).

Proposition 1.1, below, provides a useful integral representation of the BVP
(1.1)—(1.3), which will be used in proving the main result of the paper (and in
proving a basic lemma needed in the proof of our main result). This proposition has
been established by the author [32] for a more general boundary value problem on
the half-line to more general nonlinear two-dimensional delay differential systems,
in which, however, the delays are assumed to be bounded. But, as it is easy to see,
the restriction of the boundedness of the delays is not needed for the validity of the
proposition.

Proposition 1.1. Let z and y be two continuous real-valued functions defined
on the intervals [—T,00) and [0,00), respectively. Then (z,y) is a solution of the
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BVP (1.1)—(1.3) if and only if

_ #(t) for —7<t<0
(1.4) z(t) = { fot g9(s,y(s))ds fort>0

and

L5 oy = /t T H6, 0 (5= Tu(5))s s 5 (5 — Ton(s)))ds for £ 0.

We are interested in studying the problem of the existence of solutions (z,y)
of the BVP (1.1)—(1.3) with z being positive on [—7,00) — {0}. Therefore, in
addition to the assumption that ¢(0) = 0 posed previously, without mentioning it
any further, it will be supposed that

&) >0 for —7<t<O0.

The main result of this paper is Theorem 3.1, which will be stated and proved in
Section 3. This theorem provides sufficient conditions for the BVP (1.1)—(1.3) to
have at least one solution (z,y) such that z is positive on (0, co) and y is positive on
[0, 00). A crucial role in proving Theorem 3.1 plays Lemma 2.1, which will be estab-
lished in Section 2; this lemma gives useful information about the solutions (z,y)
of the BVP (1.1)—(1.3) with z being nonnegative on (0,0). Section 4 is devoted
to the application of Theorem 3.1 (as well as of Lemma 2.1) to the special case of
second order nonlinear delay differential equations. Section 5 contains the applica-
tion of Theorem 3.1 to (nonlinear) two-dimensional Emden-Fowler type differential
systems with constant delays. Also, some general examples, which demonstrate the
applicability of our main result, will be presented in Section 5.

The problem studied in the present paper is closely related to the general prob-
lem of deriving sufficient conditions for the existence of solutions with prescribed
asymptotic behavior to second (or arbitrary) order nonlinear ordinary and delay
differential equations. Among numerous articles dealing with this general problem,
we choose to refer to the most recent papers [1-3, 6—9, 17, 18, 20—22, 24—29, 31,
33—37, 39]; we, also, refer to the old classical articles [13, 14], and to the paper [40].

On the other hand, several articles have appeared in the literature, which are
concerned with the asymptotic behavior of solutions of nonlinear ordinary differen-
tial systems. See, for example, [12, 15, 16, 38]; in particular, see the monograph by
Mirzov (23] and the references cited therein.

For the basic.theory of delay differential equations and systems, the reader is
referred to the books by Diekmann et al. [4], Driver [5], Hale [10], and Hale and
Vertuyn Lunel [11].

2. A BASIC LEMMA

Here, we will establish the following basic lemma.

Lemma 2.1. Assume that the function g is positive on [0, 00) x (0,00), i.e.,

(2.1) 9(t,z) >0 forallt>0and z> 0.
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Also, assume that the function f is positive on [0,00) x (0,00)™, i.e.,
(2.2) fwi,.;wm) >0 forall t >0 and wy; >0, ..., wm > 0.
Let (z,y) be a solution of the BVP (1.1)—(1.3) with x being nonnegative on the

interval (0,00). Then z is always positive on (0,00); moreover, y is positive on

[0, c0).

We notice here that, because of the continuity of g on [0, ) x [0, c0), the hy-
pothesis that g is positive on [0, co) x (0, c0), i.e., that (2.1) holds, implies that the
function g is nonnegative on [0,00) x [0, 0), i.e.,
(2.3) 9(t,z) >0 forall t>0 and z> 0.
Similarily, as f is continuous on [0, 00) x [0, c0)™, the hypothesis that f is positive on
[0,00) % (0,00)™, i.e., that (2.2) holds, guarantees that the function f is nonnegative
on [0,00) % [0,00)™, i.e.,
(2.4) ft,wi,...,wn) >0 forallt>0 and wy > 0,...,w, > 0.

Now, we shall present an observation. Assume that (2.1) holds, and let (z,y)

be a solution of the BVP (1.1)—(1.3) such that y is positive on the interval [0, o).
Then, from the first equation of (1.1), it follows that

z'(t) >0 for everyt>0

and so z is strictly increasing on [0,c0). Hence, as z(0) = ¢(0) = 0, x is positive
on (0,00).

Proof of Lemma 2.1. The proof will be accomplished by proving that y is
positive on the interval [0, co).

First of all, we see that z is nonnegative on the whole interval [—7, 00) and so
we must have z (¢t — T;(t)) > 0 for ¢ > 0 (j = 1,...,m). Consequently, by (2.4),

(2.5) ftz(t—T1(),...,x(t —Tm(t))) >0 for every t > 0.
Moreover, we observe that, by Proposition 1.1, the solution (z,y) satisfies (1.4) and
(1.5).

Now, we will show that y(0) > 0. To this end, by applying (1.5) for ¢t = 0, we
get

(2.6) y(0) = /0 " F(5,2 (5= Tu(5)) s s (5 — Ton()))ds.

As —7 < —T;(0) < 0 (j = 1,...,m), we have z (—T; (0)) = ¢(~T;(0)) >0 (j =
1,...,m). Thus, because of (2.2), we must have

F(0,z (=T1(0)), ...,z (-=T:n(0))) > 0,
ie.,
ftz(t—T1(t), ., o (t — Tn(t))) |y > O-
In view of (2.5) and the last inequality, it follows from (2.6) that y(0) is always
positive.

Next, we shall prove that y is positive on the interval (0,00). Assume, for the
sake of contradiction, that y is not necessarily positive on (0, c0). Then, as y(0) > 0,
we see that y has always zeros in the interval (0, 00). Let o > 0 be the first zero
of y in (0,00); ie., y is positive on [0,%), and y(tp) = 0. In view of (2.1) and
(2.3), it follows from the first equation of (1.1) that z’(¢) > 0 for ¢ € [0,%), and
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z'(tg) > 0. Hence, z is strictly increasing on [0,%) and z is increasing on [0, to].
Thus, as z(0) = #(0) = 0, we see that z is always positive on (0, o). Furthermore,
by taking into account the fact that y(t9) = 0 and applying (1.5) for t = o, we
obtain '

/t " F(5,2 (5= Ti(5)) 3 (5 — Ton(s)))ds = 0.
So, because of (2.5), we must have
2.7 ft,z(t—Ti(¢)),-...,z (¢t — Tn(t))) =0 for every t > to.

By (2.7), the second equation of (1.1) gives /() = 0 for all ¢ > #g, which means
that y is constant on [tg,c0). Hence, since y(tp) = 0, we have y(t) = 0 for every
t > to. So, by taking into account (2.3), from (1.4) we obtain, for each t > ¢,

aﬂ=Al@mm¢+/lwwm@:am+/3@mwzww

to to
Thus, as z(tp) > 0, we have z(t) > 0 for every ¢t > ty. Consequently, z is always
positive on the interval (0, co). Finally, by the assumption that t]im t-T;@t)) =0
(j = 1,...,m), we can consider a point t; > 0 so that t — T;(¢) > 0 for all ¢ > #;
(4 = 1,...,m). Then, as z is positive on (0, 00), we have z (t — T}(t)) > 0 for every
t >1t; (j =1,...,m). Therefore, by using (2.2), we find that
fEtz@E—Ti(®),...,z(t — Tn(£))) >0 forallt>t,

which contradicts (2.7).
The proof of the lemma is complete.

3. THE MAIN RESULT

Our main result is the following theorem.

Theorem 3.1. Let the assumptions of Lemma 2.1 be satisfied, i.e., (2.1) and
(2.2) hold. Moreover, assume that, for each t > 0, the function g(t,-) is increasing
on [0, 00) in the sense that g(t,2z1) < g(t, z2) for any 21,25 in [0, 00) with z < 2.
Also, assume that, for each t > 0, the function f(t,-,...,-) is increasing on [0, c0)™
in the sense that f(t,wi,...,wm) < f(t,v1, ..., Um) for any (W1, ..., W), (V1, -y Vim)
in [0, 00)™ with wy; < vy, ..., Wm < Upy,.

Let there ezists a real number ¢ > 0 so that

(31) | ren® i<

where, for each j € {1,...,m}, the function p; depends on ¢, c, g and is defined by
pt-T;(t), o 0<t<Ty(t)

3.2 (2) = T

(3-2) p;(t) { fg T (2) a(s,)ds, if t > Ty(t).

(Clearly, p; (j =1,...,m) are nonnegative continuous real-valued functions on the
interval [0,00).) Then the BVP (1.1)—(1.3) has at least one solution (x,y) such
that

¢
(3-3) 0<z(t) < / 9(s,c)ds  for every t >0
0
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and

(3.4) 0<y(t) <c foreveryt>D0.

Proof. Let Y be the set of all continuous real-valued functions y defined on the
interval [0, co), that satisfy

(3.5) 0<y(t) <c foreveryt>0.

For any function y in Y, let z denote the continuous real-valued function on the
interval [T, co) defined by the formula (1.4). (Note that ¢(0) = 0.)

Consider an arbitrary function y in Y. Then, in view of (3.5), we can use (2.3)
as well as the assumption that, for each ¢t > 0, the function g(Z,-) is increasing on
[0, 0) to obtain

0<g(ty(t)) <g(,c) fort>0.
This gives
t t
0< / g(s,y(s))ds < / g(s,c)ds fort >0,
0 0

which, by the definition of z by (1.4), is written as

t
(3.6) 0<z(®) < / g(s,c)ds for every t > 0.
0

From (1.4) and (3.6) it follows that, for any j € {1,...,m} and every ¢t > 0,
0<a(t-T(t) =4 (t-T(), H0<t<Ti)
{ 0<a(t-T0) < J; 7 gls,c)ds, if 1> T5(0).
(Note that z(0) = ¢(0) = 0.) Thus, by virtue of (3.2), we have
0<z(t—T;t) <p;(t) foreveryt>0 (j=1,..,m).

Hence, by using (2.4) as well as the assumption that, for each ¢ > 0, the function
f(t,-,...,-) is increasing on [0, c0)™, we find that

(37) 0< f(t,2(E—T10), 0 (t ~ Ton(t)) < £t p1 (€)oo (8)) for £ 0.
Taking into account (3.7), we obtain, for ¢ > 0,

0 < l " F(5,2 (s = T1(5)) , oy 7 (5 — Ton(5)))ds
‘/too f(S, P1 (5) 1+++3 Pm (5))d8
Aoo f(S, pl (S) 3 s=ey pm, (S))d&

and consequently, because of hypothesis (3.1),

IN

IA

cO
(3.8) 0< / f(s,2 (s —T1(s)) ;s 2 (s — Tin(s)))ds < ¢ for every t > 0.
t
As (3.8) holds true for all functions ¥ in Y, we see that the formula

(My)(t) = /t " F5,3 (8= Tu(5)) 3 (s — Ton(s)))ds fort >0



NONLINEAR DELAY DIFFERENTIAL SYSTEMS 73

makes sense for any y in Y, and defines a mapping M of Y into itself. We will show
that the mapping M is increasing with respect to the usual pointwise ordering in
Y. To this end, let us consider two arbitrary functions y and 7 in ¥ with y < 7,
i.e., with y(t) < 7(t) for ¢ > 0. Let Z denote the continuous real-valued function on
[—T,00) defined by the formula (1.4) with Z instead of = and 7 in place of , i.e.,
~ o) for —7<t<0

' t) = —
B:) 2t) { fotg (s,9(s))ds fort>0.
As 0 < y(t) <y(¢) for t > 0, by using (2.3) as well as the assumption that, for each
t > 0, the function g(Z, -) is increasing on [0, c0), we get

0< /(; g9(s,y(s)ds < /0 9(s,9(s))ds fort>0.

So, by taking into account the definitions of z and Z by (1.4) and (3.9), respectively,
we have

0 <z(t) <z(t) foreveryt>0.
Thus, having in mind (1.4) and (3.9), we obtain, for each j € {1,...,m} and every
t >0,
0<z(t-T;@) =¢(E—T;(8) =z (t—T;(t)), f0<t<Ty()
0<z(t-T;() <z (t—-T;(t), ift>T;().
Hence, by the assumption that, for each ¢ > 0, the function f(¢,-,...,-) is increasing
on [0, 00)™, we derive
fz@-Ta(t),- 2zt —Tm(t) < f(,Z(E—T1(1)) , -, B (t — Tm(2)))
for all ¢ > 0. This gives immediately
(My)(t) < (My)(t) for every t >0,
ie., My < My. Consequently, the mapping M is increasing.
Now, we define
yo(t) =c fort>0
and
_ Unidi =My, (n=0,1,..)-
As M is an increasing mapping of Y into itself, it is not difficult to see that
(Yn)n=o,1,... is a decreasing sequence of functions in Y. Set
y= lim y, pointwise on [0, co).

Let z be defined by (1.4). Moreover, for any integer n > 0, let z, denote the
continuous real-valued function on [—7,c0) defined by (1.4) with z,, in place of
and y, instead of v, i.e.,
_f #() for —7<t<O0
Znlt) = { f:g(s, yn(s))ds fort>0."
Then
z = lim z, pointwise on [—7,00).
By (3.7), we have

0< f(t, @ (6= T1(2)) , s T (6 = Ton(8))) < £, 0y (2) ooy )
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for every ¢ > 0 and all nonnegative integers n. As hypothesis (3.1) implies, in
particular, that

/0 " £ 91 (8) s e pr (£))d < 00,

we can apply the Lebesgue dominated convergence theorem to obtain, for every
t>0,

Jm [ 560 (6 = Th(6)) 2 5~ Tl

- /t " F(5,3 (5= T1(5)) s oy 3 (5 — Ton(s)))ds.
Thus, we conclude that
nh_]fgo(M yn)(t) = (My)(t) for every t > 0.
Hence, we have
y(#) = lim gy () = lim (Myn)(t) = (My)(t) for ¢ >0

and consequently y = My, ie., (1.5) holds. Also, (1.4) is satisfied. Therefore,

by Proposition 1.1, (z,y) is a solution of the BVP (1.1)—(1.3). Asy € Y, (3.5)

and (3.6) are satisfied. By (3.6), z is nonnegative on the interval (0,co); hence,

Lemma 2.1 guarantees that x is always positive on (0,00) and, in addition, that y

is necessarily positive on [0, 00). Thus, the solution (z,y) satisfies (3.3) and (3.4).
The proof of the theorem is complete.

It is evident that Lemma 2.1 plays a crucial role in proving Theorem 3.1. More-
over, one may easily see that the proof of Lemma 2.1 is essentially based on the
use of the hypothesis that the initial function ¢ is positive on the interval [—,0)
(as well as on the assumptions (2.1) and (2.2)). This hypothesis is fundamental,
because of the fact that 7 > 0, which is a consequence of the fact that the delays T}
(4 =1, ..,m) are positive on the interval [0,00). It is clear that such a hypothesis
cannot be posed in the case of the nonlinear two-dimensional ordinary differential
systems, and hence Lemma 2.1 (and, consequently, Theorem 3.1) cannot be ap-
plied to the corresponding ordinary boundary value problem. More precisely, let
us consider the nonlinear two-dimensional delay differential system

(3.10) @) = 9(ty(®), Y@ =—fo(t,z(t— 1)),
where fo is a continuous real-valued function on [0, 00) X R, and 7 is a positive real

constant. For 7 = 0, system (3.10) reduces to nonlinear two-dimensional ordinary
differential system

(3-11) () =9(t,u(), ¥(t)=—fo(t (),
and the initial condition (1.2) becomes
(3.12) #(0)=10.

That is, when 7 = 0, the BVP (3.10), (1.2), (1.3) reduces to the BVP (3.11), (3.12),
(1.3). Lemma 2.1 and Theorem 3.1 can be applied to the delay BVP (3.10), (1.2),
(1.3), while these results are not applicable to the ordinary BVP (3.11), (3.12),
(1.3)-
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4. APPLICATION TO SECOND ORDER NONLINEAR DELAY
DIFFERENTIAL EQUATIONS

Consider the second order nonlinear delay differential equation

(4.1) [z @) + £,z (¢~ 1)),y 2 (¢ — Tm(t))) =0,

where r is a positive continuous real-valued function on the interval [0,00). We
are interested in solutions of (4.1) on the whole interval [0,00). By a solution
on [0,00) of (4.1), we mean a continuous real-valued function z defined on the
interval [—7,00), which is continuously differentiable on [0, c0) and such that rz’
is continuously differentiable on [0, co) and (4.1) is satisfied for all £ > 0. With the
delay differential equation (4.1), we associate the initial condition (1.2) as well as
the condition

(4.2) Jim r(E)z'(t) =0.

Equations (4.1), (1.2), (4.2) constitute a boundary value problem (BVP, for short)
on the half-line. A solution of the BVP (4.1), (1.2), (4.2) is a solution on [0, c0) of
(4.1) that satisfies the conditions (1.2) and (4.2).

The substitution 7z’ = y transforms the second order nonlinear delay differen-
tial equation (4.1) into the equivalent nonlinear two-dimensional delay differential
system
43) =m0 VO = —FEsETa), s~ Tn®))

By this substitution, the BVP (4.1), (1.2), (4.2) is transformed into the equivalent
BVP (4.3), (1.2), (1.3), which is a special case of the BVP (1.1)—(1.3).

For our convenience, we introduce some notation. By R we will denote the

continuous real-valued function on the interval [0,00) defined by the formula

R(t):/ot;% for ¢ > 0.

Clearly, R(0) =0, and R is positive on (0, c0).
By specifying Theorem 3.1 to the BVP (4.3), (1.2), (1.3), we are led to the
following result concerning the BVP (4.1), (1.2), (4.2).

Corollary 4.1. Assume that the function f is positive on [0,00) X (0,00)™,
i.e., (2.2) holds. Moreover, assume that, for each t > 0, the function f(t,-,...,-) is
increasing on [0, 00)™.

Let there exist a real number ¢ > 0 so that

/ f (t’ O.l(t)7 ] a-m(t)) dt S C,
0
where, for each j € {1,...,m}, the function o; depends on ¢, c, r and is defined by
U‘(i): ¢(t_T."i(t))9 Zf OStSfZ}(t)
g CRE-Ty1), i t>Ty0)-

(Clearly, o; (j =1, ...,m) are nonnegative continuous real-valued functions on the
interval [0,00).) Then the BVP (4.1), (1.2), (4.2) has at least one solution z such
that

0<z(t) < cR(t) foreveryt>0
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and
0<r@t)z'(t) <c for everyt>0.

By applying Corollary 4.1 to the particular case where r(t) = 1 for t > 0, we
immediately arrive at the main result in the recent author’s paper [31]. (Note that,
in this particular case, we have R(t) =t for ¢ > 0.)

For the sake of completeness, we also give the application of Lemma 2.1 to the
BVP (4.1), (1.2), (4.2). By specifying Lemma 2.1 to the BVP (4.3), (1.2), (1.3),
we get the next result.

Assume that (2.2) holds. Let = be a solution of the BVP (4.1), (1.2), (4.2) that is
nonnega,twe on the interval (0,00). Then z is always positive on (0, c0); moreover,
z' s positive on [0, 00) (and so =z is strictly increasing on [0, c0)).

In the particular case where r(¢t) = 1 for ¢ > 0, the above result has been
established by the author in [31].

Before closing this section, let us consider the particular case where the first
equation of (1.1) is linear, ie., the case of the nonlinear two-dimensional delay
differential system

(4.4) ' (t) = q@)y(t), ¥ (t) =—f(t,xE—Ti(t)),. z (t — Tm(?))),
where g is a positive continuous real-valued function on the interval [0, c0). Theorem
3.1 can be applied to the BVP (4.4), (1.2), (1.3). On the other hand, we immediately

see that (4.4) can be transformed into the equivalent second order nonlinear delay
differential equation

(45) |57 + 16,56~ B0, 26~ Ta)) =0
With (4.5), we associate the initial condition (1.2) and the condition
(4.6) Jim q(t) @'(t) =

It is remarkable that, instead of applying Theorem 3.1 to the BVP (4.4), (1.2),
(1.3), one can apply Corollary 4.1 to the BVP (4.5), (1.2), (4.6).

5. APPLICATION TO NONLINEAR TWO-DIMENSIONAL DELAY
DIFFERENTIAL SYSTEMS OF EMDEN-FOWLER TYPE.
EXAMPLES

Consider the nonlinear two-dimensional delay differential system of Emden-
Fowler type

m
(5-1) () =) ly()1 seny(®),  ¥'(&) =— > p; () |e(t — ;)" sgna(t — 7;),
i=1
where m is a positive integer, g is a positive continuous real-valued function on the
interval [0,00), p; (j = 1,...,m) are nonnegative continuous real-valued functions
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on [0,00), 7; (j =1, ...,m) are positive real constants, and 8 and v; (j =1,...,m)
are positive real numbers. It will be supposed that

m
ij(t) >0 forallt>0.
j=1
We notice that, as p; (j = 1,...,m) are nonnegative on [0, 00), the last hypothesis
means exactly that, for each t > 0, there exists at least one indez j € {1,...,m} so
that p;(t) > 0.
Set

T= mmax Tj.
9=1,sc;m

(T is a positive real number.) Our interest is concentrated on solutions of (5.1) on
the whole interval [0, 00). A solution on [0,00) of (5.1) is a pair of two continuous
real-valued functions z and y defined on the intervals [—7, c0) and [0, co), respec-
tively, which are continuously differentiable on [0, co) and satisfy (5.1) for all ¢ > 0.
The initial condition (1.2) as well as the condition (1.3) are associated with the
delay differential system (5.1). Hence, we have the BVP (5.1), (1.2), (1.3).

For our convenience, we denote by @ the continuous real-valued function on the
interval [0, 00) defined by the formula

Q) = /Ot g(s)ds for¢>0.

Note that Q(0) = 0 and that Q is positive on (0, c0).
By applying Theorem 3.1 to the particular case of the BVP (5.1), (1.2), (1.3),
we are led to the following corollary.

Corollary 5.1. Let there exist a real number ¢ > 0 so that

cO

ng</(; [¢(t — Tj)]7j Dj (t)dt + J:Zl Ps /T [Q(t _ Tj)]"Yj D; (t)dt L

Then the BVP (5.1), (1.2), (1.3) has at least one solution (z,y) such that
(5.2) 0 < z(t) < PQ(t) for every t >0
and (3.4) holds.

Now, in order to present some examples demonstrating the applicability of our
theorem, we shall concentrate on nonlinear two-dimensional Emden-Fowler type
delay differential systems with one constant delay.

Let us consider the delay differential system of Emden-Fowler type

(63)  ZO=a@) WO seny(®), () = () a(t — )|" sgnz(t - 7),
where p and q are positive continuous real-valued functions on the interval [0, o),
T 18 a positive real constant, and [ and v are positive real numbers.

In the particular case of the BVP (5.3), (1.2), (1.3), Corollary 5.1 is formulated
as follows.

Let there exist a real number ¢ > 0 so that
(o)

(5.4) / "8 — )] p(t)de + [ Qe-nrsmd<e

T
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Then the BVP (5.3), (1.2), (1.3) has at least one solution (x,y) such that (5.2) and
(3.4) hold.

Example 5.2. Consider the BVP (5.3), (1.2), (1.3) with By = 1. In this case,
condition (5.4) is written as

oo

[ -t e [ Qe <.
1)

T

or

(55) | we-nrstds <. {1- [ 1ae- ' p(et}

We see that, if

5:6) [ ee-nrama<,
then inequality (5.5) holds true (as an equality) for

[Tt - pe)dt
57) b ey e eyl

Clearly, c is a positive real number. So, we arrive at the next result.

Assume that By = 1. Let condition (5.6) be satisfied, and let ¢ > 0 be the real
number given by (5.7). Then the BVP (5.3), (1.2), (1.3) has at least one solution
(z,y) such that (5.2) and (3.4) hold.

Example 5.3. Let us consider the BVP (5.3), (1.2), (1.3) with By = 1. Here,
condition (5.4) becomes

(os]

[ vt peas+ e [T e - o <.
0

T

namely

(58  c- { [ iae- r)]‘*p(t)dt} /2~ ["pe - sa >0

Assume that
(5.9) /°° [Q —7)]" p(t)dt < oco.

Following the lines of Example 1 in the author’s paper [31], we can show that (5.8)
holds with ¢ > 0 if and only if

e > (3 e-nrpva

+\/ {3 1ae- r)]'*p(t)dt}2 + [ -1 s ) )
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Thus, we conclude that (5.8) is valid (as an equality) for

(5.10) c= (% / ” [Q( — )] p(t)dt

+\/ {% / ” [Q(t—"f)]”p(t)dt}2+ / ' [qs(t—T)Pp(t)dt)z-

Hence, we obtain the following result.

Assume that By = % Let condition (5.9) be satisfied, and let ¢ > 0O be the real
number given by (5.10). Then the BVP (5.3), (1.2), (1.3) has at least one solution
(z,y) such that (5.2) and (3.4) hold.

Example 5.4. Consider the case of the BVP (5.3), (1.2), (1.3) with By = 2.
In this case, condition (5.4) takes the form

[ we-nrsea+e [~ ee-nrswd<e
0

-
ie.,

(5.11) {[ 106~ et~ e+ [ 86— p0as <o.

After a long analysis similar to that used by the author in Example 2 in [31], we
can conclude that, if

(5.12) { [ 1ae- T)]”p(t)dt} / "8 — ) p(e)dt < 1,
then (5.11) holds (as an equality) for

1—/1-4{ [ Q@ — " p(t)dt} f7 [$(t — 7" ple)de
€= = .
2[77QE— )" p(t)dt
Thus, we are led to the next result.
Assume that (v = 2. Let condition (5.12) be satisfied, and let ¢ > 0 be the real

number given by (5.13). Then the BVP (5.3), (1.2), (1.3) has at least one solution
(z,y) such that (5.2) and (3.4) hold.

(5.13)

Before closing this section and ending the paper, we note that, by the use of
the particular results obtained in the above general examples, one can construct
specific examples in which our theorem is applicable. For such specific examples to
the special case of second order nonlinear delay differential equations, we refer.to .
the recent our paper [31].

REFERENCES

(1] R. P. Agarwal, S. Djebali, T. Moussaoui and O. G. Mustafa, On the asymp-
totic integration of nonlinear differential equations, J. Comput. Appl. Math. 202
(2007), 352—376.

[2] R. P. Agarwal, Ch. G. Philos and P. Ch. Tsamatos, Global solutions of a
singular initial value problem to second order nonlinear delay differential equations,
Math. Comput. Modelling 43 (2006), 854—869.



80 CH. G. PHILOS

[3] A. Constantin, On the existence of positive solutions of second order differ-
ential equations, Ann. Mat. Pura Appl. 184 (2005), 131—-138.

[4] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. ‘Walther, Delay
Equations: Functional-, Complez-, and Nonlinear Analysis, Applied Mathematical
Sciences 110, Springer-Verlag, New York, 1995.

[5] R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathemat-
ical Sciences 20, Springer-Verlag, New York, 1977.

[6] M. Ehrnstrom, On radial solutions of certain semi-linear elliptic equations,
Nonlinear Anal. 64 (2006), 1578—1586.

[7] M. Ehrnstrom, Positive solutions for second-order nonlinear differential equa-
tions, Nonlinear Anal. 64 (2006), 1608—1620.

[8] M. Ehrnstrém, Linear asymptotic behaviour of second order ordinary differ-
ential equations, Glasg. Math. J. 49 (2007), 105—120.

[9] M. Ehrnstrom, Prescribed asymptotic behaviour of solutions to semilinear
ordinary differential equations, Appl. Math. Lett. 20 (2007), 800—805.

[10] J. Hale, Theory of Functional Differential Equations, 2nd ed., Applied Math-
ematical Sciences 3, Springer-Verlag, New York, 1977.

[11] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential
Equations, Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993.

[12] 1-G. E. Kordonis and Ch. G. Philos, On the oscillation of nonlinear two-
dimensional differential systems, Proc. Amer. Math. Soc. 126 (1998), 1661—1667.

[13] T. Kusano and W. F. Trench, Existence of global solutions with prescribed
asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura
Appl. 142 (1985), 381—392.

[14] T. Kusano and W. F. Trench, Global existence theorems for solutions of
nonlinear differential equations with prescribed asymptotic behaviour, J. London
Math. Soc. (2) 31 (1985), 478—486.

[15] W. T. Li and S. S. Cheng, Limiting behaviours of non-oscillatory solutions
of a pair of coupled nonlinear differential equations, Proc. Edinburgh Math. Soc.
43 (2000), 457—473.

[16] W. T. Li and X. Yang, Classifications and existence criteria for positive
solutions of systems of nonlinear differential equations, J. Math. Anal. Appl. 298
(2004), 446—462.

[17] O. Lipovan, On the asymptotic behaviour of the solutions to a class of second
order nonlinear differential equations, Glasg. Math. J. 45 (2003), 179—187.

[18] Y. Liu, Existence and unboundedness of positive solutions for singular
boundary value problems on half-line, Appl. Math. Comput. 144 (2003), 543—556.

[19] D. Lovelady, Positive bounded solutions for a. class of linear delay differential
equations, Hiroshima Math. J. 6 (1976), 451—456.

[20] K. G. Mavridis, Ch. G. Philos and P. Ch. Tsamatos, Existence of solu-
tions of a boundary value problem on the half-line to second order nonlinear delay
differential equations, Arch. Math. (Basel) 86 (2006), 163—175.

[21] K. G. Mavridis, Ch. G. Philos and P. Ch. Tsamatos, Multiple positive
solutions for a second order delay boundary value problem on the half-line, Ann.
Polon. Math. 88 (2006), 173—191.

[22] A. B. Mingarelli and K. Sadarangani, Asymptotic solutions of forced nonlin-
ear second order differential equations and their extensions, Electron. J. Differential
Equations 2007 (2007), No. 40, pp. 1—40.



NONLINEAR DELAY DIFFERENTIAL SYSTEMS 81

[23] J. D. Mirzov, Asymptotic Properties of Solutions of Systems of Nonlin-
ear Nonautonomous Ordinary Differential Equations, Folia Facultatis Scientiarum
Naturalium Universitatis Masarykianae Brunensis, Mathematica 14, Masaryk Uni-
versity, Brno, 2004.

[24] O. G. Mustafa, Positive solutions of nonlinear differential equations with
prescribed decay of the first derivative, Nonlinear Anal. 60 (2005), 179—185.

[25] O. G. Mustafa, On the existence of solutions with prescribed asymptotic
behaviour for perturbed nonlinear differential equations of second order, Glasg.
Math. J. 47 (2005), 177—185.

[26] O. G. Mustafa and Yu. V. Rogovchenko, Global existence of solutions with
prescribed asymptotic behavior for second-order nonlinear differential equations,
Nonlinear Anal. 51 (2002), 339—368.

[27] O. G. Mustafa and Yu. V. Rogovchenko, Global existence and asymp-
totic behavior of solutions of nonlinear differential equations, Funkcial. Ekvac. 47
(2004), 167—186.

[28] O. G. Mustafa and Yu. V. Rogovchenko, Asymptotic integration of nonlinear
differential equations, Nonlinear Anal. 63 (2005), €2135—e2143.

[29] O. G. Mustafa and Yu. V. Rogovchenko, Asymptotic integration of a class
of nonlinear differential equations, Appl. Math. Lett. 19 (2006), 849—853.

[30] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero
at oo for differential equations with positive delays, Arch. Math. (Basel) 36 (1981),
168—178.

[31] Ch. G. Philos, Positive increasing solutions on the half-line to second order
nonlinear delay differential equations, Glasg. Math. J. 49 (2007), 197—211.

[32] Ch. G. Philos, On a boundary value problem on the half-line for nonlin-
ear two-dimensional delay differential systems, Ann. Polon. Math. 92 (2007),
133—153.

[33] Ch. G. Philos, I. K. Purnaras and P. Ch. Tsamatos, Asymptotic to poly-
nomials solutions for nonlinear differential equations, Nonlinear Anal. 59 (2004),
1157—1179.

[34] Ch. G. Philos, I. K. Purnaras and P. Ch. Tsamatos, Global solutions
approaching lines at infinity to second order nonlinear delay differential equations,
Funkcial. Ekvac. 50 (2007), 213—259.

[35] Ch. G. Philos and P. Ch. Tsamatos, Solutions approaching polynomials
at infinity to nonlinear ordinary differential equations, Electron. J. Differential
Equations 2005 (2005), No. 79, pp. 1—25.

[36] B. Yan, Multiple unbounded solutions of boundary value problems for second-
order differential equations on the half-line, Nonlinear Anal. 51 (2002), 1031—1044.

[37] B. Yan and Y. Liu, Unbounded solutions of the singular boundary value
problems for second order differential equations on the half-line, Appl. Math. Com-
put. 147 (2004), 629—644.

[38] X. Yang, Nonoscillatory solutions of nonlinear differential systems, Comput.
Math. Appl. 46 (2003), 1347—1362.

[39] Z. Yin, Monotone positive solutions of second-order nonlinear differential
equations, Nonlinear Anal. 54 (2003), 391—403.

[40] Z. Zhao, Positive solutions of nonlinear second order ordinary differential
equations, Proc. Amer. Math. Soc. 121 (1994), 465—469.



82 CH. G. PHILOS

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JIOANNINA, P. O. Box 1186, 451 10 JOANNINA,
GREECE
E-mail address: cphilos@cc.uoi.gr



A SURVEY ON THE OSCILLATION OF DELAY AND

DIFFERENCE EQUATIONS WITH VARIABLE DELAY

by

I.P. Stavroulakis
Department of Mathematics
University of Ioannina
451 10 Toannina, Greece
ipstav@cc.uoi.gr

ABSTRACT
Consider the first-order linear delay differential equation
'(t) + p(t)z(7(t)) = 0, t=t, (1)

where p,7 € C([tg,0), R*), 7(t) is nondecreasing, 7(¢) < t for ¢ > ¢, and
lim;_,, 7(t) = oo, and the (discrete analogue) difference equation

Aa:(n) +p(n)z(r(n)) =0, n=0,1,2,... (1y

where Az(n) = z(n+1)—z(n), p(n) is a sequence of nonnegative real numbers
and 7(n) is a nondecreasing sequence of integers such that 7(n) < n —1 for
all n > 0 and lim,,_,o, 7(n) = 0o. Optimal conditions for the oscillation of all
solutions to the above equations are presented.

1 Introduction

The problem of establishing sufficient conditions for the oscillation of all
solutions to the differential equation

'(t) + p(W)a(r(t)) = 0, t2>to, (1)
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where the functions p,7 € C([to,00), RT) (here R* = [0,c0)), 7(t) is non-
decreasing, 7(t) < t for ¢ > ¢, and lim;_,., 7(t) = 0o, has been the subject
of many investigations. See, for example, [11, 15, 17, 21-26, 28, 29-32, 33-
42, 44, 47-52, 54, 55, 59, 60, 66, 73-80, 82-84, 90] and the references cited
therein.

By a solution of Eq.(1) we understand a continuously differentiable func-
tion defined on [r(Tp), c0) for some Ty > ¢ and such that Eq.(1) is satisfied
for t > Ty. Such a solution is called oscillatory if it has arbitrarily large zeros,
and otherwise it is called nonoscillatory.

"The oscillation theory of the (discrete analogue) delay difference equation

Az(n) + p(n)z(r(n)) =0, n=0,1,2,.., (1)

where Az(n) = z(n+1)—z(n), p(n) is a sequence of nonnegative real numbers
and 7(n) is a nondecreasing sequence of integers such that 7(n) < n — 1 for
all n > 0 and lim,_, 7(n) = 00, has also attracted growing attention in the
last decades, especially in the case where the delay n — 7(n) is a constant,
that is, in the special case of the difference equation,

Az(n) +p(n)z(n—k)=0, n=0,1,2,.... (1)”

where k is a positive integer. The reader is referred to [5-10, 12, 13, 16,
18-20, 43, 46, 53, 56, 57, 61, 62, 63-65, 67-72, 81, 85-89] and the references
cited therein.

By a solution of Eq.(1)" we mean a sequence z(n) which is defined for
n > —k and which satisfles (1)’ for n > 0. A solution z(n) of Eq.(1) is
said to be oscillatory if the terms z(n) of the sequence are neither eventually
positive nor eventually negative, and otherwise the solution is said to be
nonoscillatory. (Analogously for Eq.(1)".)

In this paper our main purpose is to present the state of the art on the
oscillation of all solutions to Eq.(1) especially in the case where

t 1 t
0< li%ninf/ p(s)ds < B and lim sup/ p(s)ds < 1,
T t

— 00 (t) t—o0o —T

and (the discrete analogues) for Eq.(1)’ when

® | =

and limsup Z (i) < 1.

n—0c0

n—1
_p N <
hgr_{g)lf g p(i) <

i=7(n) i=1(n)
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2 Oscillation Criteria for Eq. (1)

In this section we study the delay equation
Z'(t) + p(t)z(T(t)) =0, t>t. (1)

where the functions p, 7 € C([tg,00), R"), 7(¢) is nondecreasing, 7(t) < t for
1 > tg and limy . 7() = oo.
The first systematic study for the oscillation of all solutions to Eq.(1)

was made by Myshkis. In 1950 [58] he proved that every solution of Eq.(1)
oscillates if

lim sup[t — 7(¢)] < oo and li%ninf[t —7(t)] li%ninfp(t) > é. (CY)

t—o0 —re0

In 1972, Ladas, Lakshmikantham and Papadakis [44] proved that the
same conclusion holds if

T
A= limsup/ p(s)ds > 1. (C2)

t—o00 (t)

In 1979, Ladas [42] established integral conditions for the oscillation of
Eq.(1) with constant delay. Tomaras [77-79] extended this result to Eq.(1)
with variable delay. For related results see Ladde [49-51]. The following most
general result is due to Koplatadze and Canturija [37].

If

T
a := liminf p(s)ds > —1-, (Cs)

t—o0 ‘r(t) e

then all solutions of Eq.(1) oscillate; If

13
1imsup/ p(s)ds < %, (V1)

t—o0 (t)

then Eq.(1) has a nonoscillatory solution.

It is obvious that there is a gap between the conditions (Cy) and (Cs)
when the limit tlim f:(t) p(s)ds does not exist. How to fill this gap is an

interesting problem which has been recently investigated by several authors.
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In 1988, Erbe and Zhang [26] developed new oscillation criteria by em-
ploying the upper bound of the ratio z(7(¢))/z(t) for possible nonoscillatory
solutions z(t) of Eq.(1). Their result says that all the solutions of Eq.(1) are
oscillatory, if 0 <a < % and

a2
A>1-— —4—- (04)

Since then several authors tried to obtain better results by improving the
upper bound for z(7(t))/z(t).
In 1991, Jian [35] derived the condition
2
a
A>1— ——— C
2(1—aq)’ (Cs)
while in 1992, Yu and Wang [83] and Yu, Wang, Zhang and Qian [84] obtained
the condition

o ST — 98— a2

A>1-— 1 ¢ ; ot 2 (Cﬁ)
In 1990, Elbert and Stavroulakis [23] and in 1991 Kwong [41], using dif-
ferent techniques, improved (Cj), in the case where 0 < a < 1, to the

conditions 1
Asl—(0—-——) (Cr)

( \/)\—1)

and A

A> l’l—]_-t— (CS)

A1
respectively, where A is the smaller real root of the equation \ = e*.
In 1994, Koplatadze and Kvinikadze [38] improved (Cs), while in 1998,

Philos and Sficas [59] and in 1999, Zhou and Yu [90] and Jaro$ and Stavroulakis
[34] derived the conditions

A>1-—2% %5 (Cs)

l—a—+v1—2a—a2 1

A>1- -(1-—=)% (Cho)
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and

In\{+1 1—a—+1—-2a—a2
A> ; — 5 ; (Cn1)
1

respectively.

Consider Eq.(1) and assume that 7(¢) is continuously differentiable and
that there exists § > 0 such that p(7(¢))7'(t) > 6p(t) eventually for all ¢.
Under this additional condition, in 2000, Kon, Sficas and Stavroulakis [36]
and in 2003, Sficas and Stavroulakis [60] established the conditions

nd+1l I1—d—q/(1—a)—40

A
Y 2

(2.1)

and

>In)\1_l+\/l+29~29/\1M

A A1 O

(2.2)

a —a— —a)2—
respectively, where © = %;‘—a——l and M = 12V(-2 740 (; i

Remark 2.1. ([36], [60]) Observe that when 6 = 1, then © = 2152=1
and (2.1) reduces to

2
A>2a+——1, (012)
A1
while in this case it follows that M =1—a— /\ll and (2.2) reduces to
InA —1++/5—=2X; + 2aX
A> nA 3 : 1. (013)
1

In the case where a = 1, then A; = ¢, and (Ci3) leads to

VT — 2e

€

A> ~ 0.459987065.

It is to be noted that as a — 0, then all the previous conditions (Cy) —
(C12) reduce to the condition (Cs), i.e. A > 1. However, the condition (Ci3)
leads to

A>+/3-1=0.732,

which is an essential improvement. Moreover (Ci3) improves all the above
conditions when 0 < a < % as well. Note that the value of the lower bound
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on A can not be less than % =~ 0.367879441. Thus the aim is to establish
a condition which leads to a value as close as possible to % For illustrative
purpose, we give the values of the lower bound on A under these conditions

when a = %

(Cy):  0.966166179
(Cs):  0.892951367
(Cs):  0.863457014
(C7):  0.845181878
(Cg):  0.735758882
(Co):  0.709011646
(Cy):  0.708638892
(Ci1):  0.599215896
(Cia):  0.471517764

(Ciz):  0.459987065

We see that the condition (Ci3) essentially improves all the known results
in the literature.

Example 2.1 ([60]) Consider the delay differential equation
1
' (t) + pz(t — gsin® v/t — p_e) =

where p > 0,9 >0 and pg = 0.46 — % Then

¢ 1 1
a = liminf pds = li%n inf p(gsin® vt + E) = -

t—o0 T(t) e

and

¢ 1 1

A =lim sup/ pds = lim sup p(g sin® Vi+ —) =pg+ = = 0.46.
t—oo T(t) t—oo pe €

Thus, according to Remark 2.1, all solutions of this equation oscillate. Ob-

serve that none of the conditions (Cy)-(Ci2) apply to this equation.

Following this historical (and chronological) review we also mention that

in the case where
t

t
1
/ p(s)ds > é and lim p(s)ds = =

6) =00 Jor(t) &

this problem has been studied in 1995, by Elbert and Stavroulakis [24], by
Kozakiewicz [39], Li [54, 55] and in 1996, by Domshlak and Stavroulakis [22].
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3 Oscillation Criteria for Eq. (1)’

In this section we study the difference equation
Az(n) +pr)Elrn)) =0, n=0,1,2,.., (1)

where Az(n) = z(n+1)—z(n), p(n) is a sequence of nonnegative real numbers
and 7(n) is a nondecreasing sequence of integers such that 7(n) < n — 1 for
all n > 0 and lim,, o 7(n) = 0.

In the special case where the delay n — 7(n) is a constant, the delay
difference equation (1)’ becomes

Az(n) +p(n)z(n—k) =0, n=0,1,2, ... (1)

where k is a positive integer.

In 1981, Domshlak [12 |was the first who studied this problem in the case
where k£ = 1.Then, in 1989, Erbe and Zhang [27] established that all solutions
of Eq.(1)” are oscillatory if

k‘k

iminfp(n) > G yem

(3.1)

or

lim sup Z (C)"

n—00

In the same year, 1989, Ladas, Philos and Sficas [46] proved that a sufficient
condition for all solutions of Eq.(1)” to be oscillatory is that

k+1
11m1nf Z () > (k = 1) (&)

i=n—k

Therefore they improved the condition (3.1) by replacing the p(n) of (3.1)
by the arithmetic mean of p(n — ), L p(n—1) in (Cs)".

Concerning the constant —+1—)—,;,— in (3.1) it should be emphasized that,
as it is shown in [27], if

kk

sup p(n) < W
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then Eq.(1)” has a nonoscillatory solution.
In 1990, Ladas [43] conjectured that Eq.(1)” has a nonoscillatory solution

< ()"

i=n—k

if

holds eventually. However, a counterexample to this conjecture was given in
1994, by Yu, Zhang and Wang [86].

It is interesting to establish sufficient oscillation conditions for the equa-
tion (1)” in the case where neither (Cz)” nor (Cs)” is satisfied.

In 1995, the following oscillation criterion was established by Stavroulakis
[63]:

k+1
fO0<ag < (ﬁ) , Where

n—1
ap = 117111_1' g}f _Z_k p(7)
then the condition

>
limsupp(n) > 1— % (3:2)

n—oo 4

implies that all solutions of Eq.(1)"” oscillate. In 2004, the same author [64]
improved the condition (3.2) to the following

n-1

2
o
li ) e ] N
im sup izzn;kp@) = (Ca)
or

n—1

lim sup Z p(i) > 1—af, (3.3)
R0 i=n—k

while in 2006, Chatzarakis and Stavroulakis [5], established the condition

o

n—1

n—00

(3.4)

i=n—k
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Also, Chen and Yu [6] obtained the following oscillation condition

n 1—&0—'\/1—2a0—‘a% (Cﬁ)”

lim sup p(i)>1— 5

n—oo 3
i=n—k

Remark 3.1 Observe that the conditions (C,)”, (Cs)”, (Cy)” and (Cs)”
are the discrete analogues of the conditions (C5), (C3), (Cy) and (Cs) respec-
tively for Eq.(1)" .

In the case of Eq.(1)" with a general delay argument 7(n), from Chatzarakis,
Koplatadze and Stavroulakis [2], it follows the following

Theorem 3.1 ([2]) If

lim sup Z p(i) > 1 (C2)

nee i=7(n)

then all solutions of Eq. (1) oscillate.

This result generalizes the oscillation criterion (C5)”. Also Chatzarakis,
Koplatadze and Stavroulakis [3] extended the oscillation criterion (C3)” to
the general case of Eq. (1)’. More precisely, the following theorem has been
established in [3].

Theorem 3.2 ([3]) Assume that

n—1
lim sup Z p(i) < +o0 (3.5)
n=oe i=7(n)
and
n—1 1
T 5 . L 7
a .—1115{1_)1£f ';)p(z) > (Cs)

Then all solutions of Eq.(1) oscillate.

Remark 3.2 It is to be pointed out that the conditions (C3)" and
(Cs)' are the discrete analogues of the conditions (C2) and (Cs) and also
the analogues of the conditions (C5)” and (Cs)” for Eq.(1)" in the case of a
general delay argument 7(n).
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Remark 3.3 ([3]). The condition (C;)’ is optimal for Eq.(1)’ under the
assumption that hI_il_l (n — 7(n)) = oo, since in this case the set of natural

numbers increases infinitely in the interval [7(n),n — 1] for n — oo.

Now, we are going to present an example to show that the condition
(C3)' is optimal, in the sense that it cannot be replaced by the non-strong
inequality.

Example 3.1 ([3]) Consider Eq.(1)’, where

T(n) = [Bn], p(n) = (n™> = (n+ 1)) ({Bn])*, B€(0,1), A=—-In7'p

(3.6)
and [An] denotes the integer part of fn.
It is obvious that
nt (= (n+ 1)) > X for n— oo,
Therefore )
n(n™ - (n+1)7) ([Bn]) — ; for n — oo. (3.7)
Hence, in view of (3.6) and (3.7), we have
H—1 n—1 = 1
. . . A . o [ 3 — N
hﬁg}f.z p(i) = = hﬂfﬂf Z 3 (™= GE+1)7) (18i) -
i=7(n) i=(fn]
n—1
1 X1 1
= - ]_' 1 _—= - —_ = -
e lffx—l»g:lf Z i e o B e
i=[pn)
or
n—1 1
- N 38
hﬂg}f Z p() . (3.8)

i=7(n)
Observe that all the conditions of Theorem 3.2 are satisfied except the con-
dition (C3)’. In this case it is not guaranteed that all solutions of Eq.(1)

oscillate. Indeed, it is easy to see that the function u = n™> is a positive
solution of Eq.(1)".
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As it has been mentioned above, it is an interesting problem to find new
sufficient conditions for the oscillation of all solutions of the delay difference
equation (1)’, in the case where neither (C,)’ nor (Cs)’ is satisfied.

In 2008, Chatzarakis, Koplatadze and Stavroulakis [2] investigated for
the first time this question for the difference equation (1)’ in the case of a
general delay argument 7(n) and derived the following theorem.

Theorem 3.3 ([2]) Assume that 0 < a < 1. Then we have:

@M I
limsup Y p(j)>1-(1-vI-a) (3.9)

n—00 5
Jj=T7(n)

then all solutions of Eq.(1)" oscillate.
(IT) If in addition,

p(n) > 1—+/1—«a for all large n, (3.10)

and

- 1—+/1—
lim sup Z p(j)>1—«a < (3.11)

n—oco \/1—-01

j=7(n)

then all solutions of Eq.(1)" oscillate.

Recently, the above result was improved in [4] as follows.
Theorem 3.4 ([4]) (I) If 0<a <! and

lim sup Z >1—= (1 —a—+v1-2a) (3.12)

n—0co

then all solutions of Eq.(1)" oscillate.
(II) If 0 < a < 6—4v2 and in addition,

p(n) > & for all large n, (3.13)

[\o]

and

. 1
lim sup Z p(j)>1v—z<2——3oz—\/4—12a+a2) (3.14)

n—od 3
Jj=T7(n)

then all solutions of Eq.(1)" are oscillatory.
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Remark 3.4 Observe the following:
(i) When 0 < a < 1, it is easy to verify that

(l-a-vi=2a)>(1-vi—a)’,

NN

and therefore the inequality (3.12) improves the inequality (3.9).

(ii) When 0 < o < 6 — 4+/2, because
l—vli—a> %,

we see that the assumption (3.13) is weaker than the assumption (3.10), and
moreover, we can show that

1 1—+V1—«
29 _230 /T T90 =02 2) L .
4(2 3o 4—12a+0?) >« N

and so the inequality (3.14) is an improvement of the inequality (3.11).
(iii) When 0 < o < 1, it is easy to see that

s(l-e-VI—2a-a)>;(1-a-vI-2a)

and therefore, in the case of Eq.(1)”, the condition (Cg)” is weaker than the
condition (3.12).
Observe, however, that when 0 < oo < 6 — 4/2, it is easy to show that

1 1
L(2-3-VITTaT @) > L (1—a-vITTa= ),
4(2 3o 4 — 1200+ & >2 l—« 1 -2« a)

and therefore in this case and when (3.13) holds, inequality (3.14) improves
the inequality (Cs)” and especially, when o = 6 — 44/2 ~ 0.3431457, the
lower bound in (Cs)” is 0.8929094 while in (3.14) is 0.7573593.

We illustrate by the following example.
Example 3.2 ([4]) Consider the equation
Az(n) + p(n)z(n — 2) =0,
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where
1474 1 1488 6715

3 — = — = — = ceen
Here k = 2 and it is easy to see that
1474 1488 25 %
= liminf — == 2} ~0.2962963
ap = limin _; PU) = T5505 * Taoog = 02962 < <3> 0.2962963,
and
1474 1488 6715
]_ = = . %
oo .Z ?(9) = To000 ~ 10000 + o000 — 2877

Observe that
1
0.9677>1— 2 (1 — ap — V1 —20p) ~ 0.967317794,

that is, condition (3.12) of Theorem 3.4 is satisfied and therefore all solutions
oscillate. Also, condition (Cs)” is satisfied. Observe, however, that

0.9677 < 1,
ap = 0.2062 < (§> ~ (.2962963,

0.9677 < 1 — (1 — /T —ag)” = 0.974055774,

and therefore none of the conditions (C5)”, (Cs)” and (3.9) is satisfied.
If, on the other hand, in the above equation

1481 6138
it is easy to see that
n—1 3
1481 1481 2
ap = lim inf > p() = o000+ Wogoo = 0.2962 < (§> ~ 0.2962963,
j=n—
and
1481 1481 6138
li =0.91.
e .Z P(7) = 15000 T 10000 T 10000

..._n_
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Furthermore, it is clear that
p(n) > %9 for all large n.

In this case

1
091>1- 1 <2 —3ap — /4 — 1200 + a%) =~ (0.904724375,

that is, condition (3.14) of Theorem 3.4 is satisfied and therefore all solutions
oscillate. Observe, however, that

091 < 1,

9\ 3
ap = 0.2962 < (§> =~ (.2962963,

091 < 1— (1—+vI—ag)” = 0.974055774,

1
091 <1- 3 (1 —ap—+4/1—2a — ozg) ~ 0.930883291,

and therefore none of the conditions (Cs)”, (C3)", (3.9) and (Cs)” is satisfied.

REFERENCES

1. R.P. Agarwal and P.J.Y. Wong, Advanced Topics in Difference Equa-
tions, Kluwer, 1997.

2. G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Oscillation cri-
teria of first order linear difference equations with delay argument, Non-
linear Anal. 68 (2008), 994-1005.

3. G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Optimal oscil-
lation criteria for first order difference equations with delay argument,
Pacific J. Math. 235 (2008), 15-33.

4. G.E. Chatzarakis, Ch.G.Philos and I.P. Stavroulakis, On the oscilla-
tion of the solutions to linear difference equations with variable delay,
FElectron. J. Diff. Egns. Vol. 2008 (2008), No. 50, pp. 1-15.

96



10.

11.

12.

13.

14.

15.

G.E. Chatzarakis and I.P. Stavroulakis, Oscillations of first order linear
delay difference equations, Aust. J. Math. Anal. Appl., 3 (2006), No.1,
Art.14, 11pp.

. M.P. Chen and Y.S. Yu, Oscillations of delay difference equations with

variable coefficients, Proc. First Intl. Conference on Difference Equa-
tions, (Edited by S.N. Elaydi et al), Gordon and Breach 1995, pp.
105-114.

. S.S. Cheng and B.G. Zhang, Qualitative theory of partial difference

equations (I): Oscillation of nonlinear partial difference equations,
Tamkang J. Math. 25 (1994), 279-298.

S.S. Cheng, S.T. Liu and G. Zhang, A multivariate oscillation theorem,
Fasc. Math. 30 (1999), 15-22.

. 3.S. Cheng, S.L. Xi and B.G. Zhang, Qualitative theory of partial dif-

ference equations (II): Oscillation criteria for direct control system in
several variables, Tamkang J. Math. 26 (1995), 65-79.

S.S. Cheng and G. Zhang, “Virus” in several discrete oscillation theo-
rems, Applied Math. Letters, 13 (2000), 9-13.

J. Diblik, Positive and oscillating solutions of differential equations with
delay in critical case, J. Comput. Appl. Math. 88 (1998), 185-2002.

Y. Domshlak, Discrete version of Sturmian Comparison Theorem for
non-symmetric equations, Doklady Azerb. Acad. Sci. 37 (1981), 12-15
(in Russian).

Y. Domshlak, Sturmian comparison method in investigation of the
behavior of solution for differential-operator equations, “Elm”, Baku,
USSR 1986 (in Russian).

Y. Domshlak, Oscillatory properties of linear difference equations with
continuous time, Differential Equations Dynam. Systems, 4 (1993),
311-324.

Y. Domshlak, Sturmian comparison method in oscillation study for
discrete difference equations, I, J. Diff. Integr. Egs, 7 (1994), 571-
582.

97



16

17.

18.

19.

20.

21,

22.

23.

24.

25.

26.

Y. Domshlak, On oscillation properties of delay differencial equations
with oscillating coefficients, Funct. Differ. Equ., Israel Seminar, 2
(1994), 59-68.

Y. Domshlak, Delay-difference equations with periodic coefficients: sharp
results in oscillation theory, Math. Inequal. Appl., 1 (1998), 403-422.

Y. Domshlak, What should be a discrete version of the Chanturia-
Koplatadze Lemma? Funct. Differ. Equ., 6 (1999), 299-304.

Y. Domshlak, Riccati Difference Equations with almost periodic coeffi-
cients in the critical state, Dynamic Systems Appl., 8 (1999), 389-399.

Y. Domshlak, The Riccati Difference Equations near ” extremal” critical
states, J. Difference Equations Appl., 6 (2000), 387-416.

Y. Domshlak and A. Aliev, On oscillatory properties of the first order

differential equations with one or two retarded arguments, Hiroshima
Math. J. 18 (1998), 31-46.

Y. Domshlak and I.P. Stavroulakis, Oscillations of first-order delay dif-
ferential equations in a critical state, Applicable Anal., 61 (1996), 359-
377.

A. Elbert and I.P. Stavroulakis, Oscillations of first order differential
equations with deviating arguments, Univ of Ioannina T.R. No 172
1990, Recent trends in differential equations, 163-178, World Sci. Ser.
Appl. Anal,,1, World Sci. Publishing Co. (1992).

A. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria
for delay differential equations, Proc. Amer. Math. Soc., 123 (1995),
1503-1510.

L.H. Erbe, Qingkai Kong and B.G. Zhang, Oscillation Theory for Func-
tional Differential Equations, Marcel Dekker, New York, 1995.

L.H. Erbe and B.G. Zhang, Oscillation of first order linear differential
equations with deviating arguments, Differential Integral Equations, 1
(1988), 305-314.

98



27.

28.

29.

30.

31,

32.

33.

34.

35.

36.

37.

38.

L.H. Erbe and B.G. Zhang, Oscillation of discrete analogues of delay
equations, Differential Integral Equations, 2 (1989), 300-309.

N. Fukagai and T. Kusano, Oscillation theory of first order functional
differential equations with deviating arguments, Ann. Mat. Pura
Appl.,136 (1984), 95-117.

K.Gopalsamy, Stability and Oscillations in Delay Differential Equations
of Population Dynamics, Kluwer Academic Publishers, 1992.

I. Gyori and G. Ladas. Oscillation Theory of Delay Differential Equa-
tiosn with Applications, Clarendon Press, Oxford, 1991.

J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag,
New York, 1997.

A'F. Ivanov, and V.N. Shevelo, Oscillation and asymptotic behavior
of solutions of first order differential equations, Ukrain, Math. Zh., 33
(1981), 745-751, 859.

J. Jaro§ and I.P. Stavroulakis, Necessary and sufficient conditions for
oscillations of difference equations with several delays, Utilitas Math.,
45 (1994), 187-195.

J. Jaro§ and I.P. Stavroulakis, Oscillation tests for delay equations,
Rocky Mountain J. Math., 29 (1999), 139-145.

C. Jian, Oscillation of linear differential equations with deviating ar-
gument, Math. in Practice and Theory, 1 (1991), 32-41 (in Chinese).

M. Kon, Y.G. Sficas and I.P. Stavroulakis, Oscillation criteria for delay
equations, Proc. Amer. Math. Soc., 128 (2000), 2989-2997.

R.G. Koplatadze and T.A. Chanturija, On the oscillatory and monotonic
solutions of first order differential equations with deviating arguments,
Differentsial’nye Uravneniya, 18 (1982), 1463-1465.

R.G. Koplatadze and G. Kvinikadze, On the oscillation of solutions of
first order delay differential inequalities and equations, Georgian Math.
J. 1 (1994), 675-685.

99



39

40.

41.

42.

43.

44.

45.

46.

47.

48.

E. Kozakiewicz, Conditions for the absence of positive solutions of first
order differential inequalities with deviating agruments, 4th Intl. Coll.
on Differential Equations, VSP, 1994, 157-161.

M.R. Kulenovic and M.K. Grammatikopoulos, First order functional

differential inequalities with oscillating coefficients, Nonlinear Anal. 8
(1984), 1043-1054.

M.K. Kwong, Oscillation of first order delay equations, J. Math. Anal.
Appl., 156 (1991), 374-286.

G. Ladas, Sharp conditions for oscillations caused by delay, Applicable
Anal., 9 (1979), 93-98.

G. Ladas, Recent developments in the oscillation of delay difference
equations, International Conference on Differential Equations, Stability
and Control, Marcel Dekker, New York, 1990.

G. Ladas, V. Laskhmikantham and J.S. Papadakis, Oscillations of
higher-order retarded differential equations generated by retarded ar-
guments, Delay and Functional Differential Equations and Their Ap-
plications, Academic Press, New York, 1972, 219-231.

G. Ladas, L. Pakula and Z.C. Wang, Necessary and sufficient conditions
for the oscillation of difference equations, PanAmerican Math. J., 2
(1992), 17-26.

G. Ladas, Ch.G. Philos and Y.G. Sficas, Sharp conditions for the os-
cillation of delay difference equations, J. Appl. Math. Simulation, 2
(1989), 101-112.

G. Ladas, C. Qian and J. Yan, A comparison result for the oscillation
of delay differential equations, Proc. Amer. Math. Soc., 114 (1992),
939-946.

G. Ladas, Y.G. Sficas and I.P. Stavroulakis, Functional-differential in-
equalities and equations with oscillating coefficients, Trends in theory
and practice of nonlinear differential equations, (Arlington, Tex., 1982),
277-284, Lecture Notes in Pure and Appl. Math., 90, Marcel Dekker,
New York, 1984.

100



49.

50.

ol.

92.

93.

o4.

95.

56.

o7.

58.

99.

60.

G.S. Ladde, Oscillations caused by retarded perturbations of first order
linear ordinary differential equations, Atti Acad. Naz. Lincei. Rend.
Cl. Sci. Fis. Mat. Natur., 63 (1977), 351-359.

G.S. Ladde, Class of functional equations with applications, Nonlinear
Anal., 2 (1978), 259-261.

G.S. Ladde, Stability and oscillation in single-species processes with
past memory, Int. J. System Sci., 10 (1979), 621-647.

G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation Theory
of Differential Equations with Deviating Arguments, Marcel Dekker,
New York, 1987.

B. Lalli and B.G. Zhang, Oscillation of difference equations, Collog.
Math., 65 (1993), 25-32.

B. Li, Oscillations of delay differential equations with variable coeffi-
cients, J. Math. Anal. Appl., 192 (1995), 312-321.

B. Li, Oscillations of first order delay differential equations, Proc. Amer.
Math. Soc., 124 (1996), 3729-3737.

Zhiguo Luo and J.H. Shen, New results for oscillation of delay difference
equations, Comput. Math. Appl. 41 (2001), 553-561.

Zhiguo Luo and J.H. Shen, New oscillation criteria for delay difference
equations, J. Math. Anal. Appl. 264 (2001), 85-95.

A.D. Myshkis, Linear homogeneous differential equations of first or-
der with deviating arguments, Uspekhi Mat. Nauk, 5 (1950), 160-162
(Russian).

Ch.G. Philos and Y.G. Sficas, An oscillation criterion for first-order
linear delay differential equations, Canad. Math. Bull. 41 (1998),
207-213.

Y.G. Sficas and I.P. Stavroulakis, Oscillation criteria for first-order de-
lay equations, Bull. London Math. Soc., 35 (2003), 239-246.

101



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7L

12,

J.H. Shen and Zhiguo Luo, Some oscillation criteria for difference equa-
tions, Comput. Math. Applic., 40 (2000), 713-719.

J.H. Shen and L.P. Stavroulakis, Oscillation criteria for delay difference
equations, Univ. of Ioannina, T. R. N° 4, 2000, Electron. J. Diff. Eqns.
Vol. 2001 (2001), no.10, pp. 1-15.

I.P. Stavroulakis, Oscillations of delay difference equations, Comput.
Math. Applic., 29 (1995), 83-88.

L.P. Stavroulakis, Oscillation Criteria for First Order Delay Difference
Equations, Mediterr. J. Math. 1 (2004), 231-240.

X.H. Tang, Oscillations of delay difference equations with variable co-
efficients, (Chinese), J. Central So. Univ. Technology, 29 (1998), 287-
288.

X.H. Tang, Oscillation of delay differential equations with variable co-
efficients, J. Math. Study, 31 (3)(1998), 290-293.

X.H. Tang and S.S. Cheng, An oscillation criterion for linear difference
equations with oscillating coefficients, J. Comput. Appl. Math., 132
(2001), 319-329.

X.H. Tang and J.S. Yu, Oscillation of delay difference equations, Com-
put. Math. Applic., 37 (1999), 11-20.

X.H. Tang and J.S. Yu, A further result on the oscillation of delay
difference equations, Comput. Math. Applic., 38 (1999), 229-237.

X.H. Tang and J.S. Yu, Oscillations of delay difference equations in a
critical state, Appl. Math. Letters, 13 (2000), 9-15.

X.H. Tang and J.S. Yu, Oscillation of delay difference equations, Hokkaido
Math. J. 29 (2000), 213-228.

X.H. Tang and J.S. Yu, Oscillation of first order delay differential equa-
tions, J. Math. Anal. Appl., 248 (2000), 247-259.

102



73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

X.H. Tang and J.S. Yu, Oscillations of first order delay differential
equations in a critical state, Mathematica Applicata 13 (1)(2000), 75-
79.

X.H. Tang and J.S. Yu, Oscillation of first order delay differential equa-
tions with oscillating coefficients, Appl Math.-JCU, 15 (2000), 252-258.

X.H. Tang and J.S. Yu, New oscillation criteria for delay difference
equations, Comput. Math. Applic., 42 (2001), 1319-1330.

X.H. Tang, J.S. Yu and Z.C. Wang, Comparison theorems of oscilla-
tion of first order delay differential equations in a critical state with
applications, Ke Xue Tongbao, 44 (1999), 26-30.

A. Tomaras, Oscillation behavior of an equation arising from an indus-
trial probrem, Bull. Austral. Math. Soc., 13 (1975), 255-260.

A. Tomaras, Oscillations of a first order functional differential equation,
Bull. Austral. Math. Soc., 17 (1977), 91-95.

A. Tomaras, Oscillatory behaviour of first order delay differential equa-
tions, Bull. Austral. Math. Soc.,19 (1978), 183-190.

Z.C. Wang, I.P. Stavroulakis and X.Z. Qian, A Survey on the oscillation
of solutions of first order linear differential equations with deviating
arguments, Appl. Math. E-Notes, 2 (2002), 171-191.

Weiping Yan and Jurang Yan, Comparison and oscillation results for
delay difference equations with oscillating coefficients, Intl. J. Math.
& Math. Sci., 19 (1996), 171-176.

J.S. Yu and X.H. Tang, Comparison theorems in delay differential equa-
tions in a critical state and application, Proc. London Math. Soc., 63
(2001),188-204.

J.S. Yu and Z.C. Wang, Some further results on oscillation of neutral
differential equations, Bull. Austral. Math. Soc., 46 (1992), 149-157.

J.S. Yu, Z.C. Wang, B.G. Zhang and X.Z. Qian, Oscillations of dif-
ferential equations with deviting arguments, Panamerican Math. J., 2
(1992), 59-78.

103



85.

86.

87.

88.

89.

90.

J.S. Yu, B.G. Zhang and X.Z. Qian, Oscillations of delay difference
equations with oscillating coefficients, J. Math. Anal. Appl., 177
(1993), 432-444.

J.S. Yu, B.G. Zhang and Z.C. Wang, Oscillation of delay difference
equations, Applicable Anal., 53 (1994), 117-124.

B.G. Zhang, S.T. Liu and S.S. Cheng, Oscillation of a class of delay
partial difference equations, J. Differ. Egqns Appl., 1 (1995), 215-226.

B.G. Zhang and Yong Zhou, The semicycles of solutions of delay dif-
ference equations, Comput. Math. Applic., 38 (1999), 31-38.

B.G. Zhang and Yong Zhou, Comparison theorems and oscillation crite-
ria for difference equations, J. Math. Anal. Appl., 247 (2000), 397-409.

Y. Zhou and Y.H.Yu, On the oscillation of solutions of first order dif-
ferential equations with deviating arguments, Acta Math. Appl. Sinica
15, no.3, (1999), 288-302.

104





